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TMC BEHAVIOR MODELING AND LIFE PREDICTION

UNDER MULTIAXIAL STRESSES

NASA CONTRACT NAS3-27027

SUMMARY

The goal of this program was to manufacture and burst test small diameter SCS-6/Ti-6A1-

4V composite rings for use in the design of an advanced titanium matrix composite (TMC)

impeller. The Textron Specialty Metals grooved foil-fiber process was successfully used to make

high quality TMC rings. A novel spin test arbor with "soft touch" fingers to retain the TMC ring

was designed and manufactured. The design of the arbor took into account its use for cyclic

experiments as well as ring burst tests. Spin testing of the instrumented ring was performed at

ambient, 149C (300F), and 316C (600F) temperatures. Assembly vibration was encountered

during spin testing but this was overcome through simple modification of the arbor. A spin-to-

burst test was successfully completed at 316C (600F). The rotational speed of the TMC ring at

burst was close to that predicted.

In addition to the spin test program, a number of SCS-6/Ti-6AI-4V test panels were made.

Neat Ti-6A1-4V panels also were made.



TMC BEHAVIOR MODELING AND LIFE PREDICTION

UNDER MULTIAXIAL STRESSES

1. INTRODUCTION

The aggressive goals of the IHPTET (Integrated High Performance Turbine Engine

Technology) initiative require the development of high performance turbine engine components

of advanced design. For the turboshaft/turboprop engine, one of the key components is the

centrifugal compressor, or impeller, which is required to operate at high tip speeds and metal

temperatures in order to achieve the high overall pressure ratio of an advanced compressor. An

example of an advanced impeller design is shown in Figure 1.

Impellers in current engines are made either of nickel base alloys, e.g., alloy 718, or high-

strength titanium alloys such as Ti-6-2-4-6. The titanium alloys have the advantage of lower

density than nickel alloys and can operate at higher tip speeds. The nickel alloys have the

advantage of being able to operate at higher compressor exit temperatures. Neither system of

monolithic alloys has the capability of meeting the requirements of an advanced impeller to meet

the Phase II IHPTET goals for the turboshaft/turboprop gas generator.

G 7568-1

Figure 1. Finished Machined Titanium Advanced Impeller Design

Showing Splittered Airfoils.
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As aconsequence,radicallynewmaterialstechnologiesarerequiredto providethe
necessarystrengthattheoperatingtemperaturesof anadvancedimpeller.An attractive new

technology for meeting the strength requirements is titanium metal matrix composites (TMC) in

which continuous fibers of silicon carbide are dispersed in a titanium alloy matrix. A commonly

used silicon carbide fiber is the Textron Specialty Metals fiber SCS-6 with a strength of 550 ksi

at room temperature and a modulus of 60 Msi (413 GPa). A higher strength fiber, Ultra SCS, is

now also available from Textron Specialty Materials. A number of titanium alloy matrices have

been evaluated for the SCS-6 fiber, e.g., Ti-6A1-4V, Beta 21S and Ti-15-3. In this program we

chose the SCS-6/Ti-6-4 system. Considerable property data exists for this system. It is being used

as a standard by the Titanium MMC Life Prediction Cooperative.

It must be appreciated that unidirectional layups of the silicon carbide fibefftitanium alloy

matrix provide, as a consequence, a highly anisotropic system. In the longitudinal or [0]

direction, the system possesses very high specific strength and modulus and the properties are

controlled by the fiber. In the transverse or [90] direction, the properties are significantly lower as

a function of the titanium alloy matrix, the fiber/matrix interface, and the fiber volume fraction.

Recognition of the anisotropy of the TMC is necessary in the design of a rotating turbine

component such as the impeller if the strengthening potential of the composite is to be

successfully used as a reinforcing ring or more complex structure bonded within the body of the

component.

The implementation of a TMC reinforcing structure for an advanced turbine engine requires

development activity in several areas, including:

a. Materials and Processing

b. Component Design

c. Component Fabrication

d. Life Prediction.

The sound design and manufacture of a TMC reinforced component is predicated on a complete

understanding of deformation under static and dynamic loading that occurs under the multiaxial

stress state engendered by component rotation.

The objective of this program, initially, was to predict and verify the monotonic and low-

cycle fatigue response of a titanium composite ring, which would serve as an insert in a

centrifugal compressor component, using the NASA developed Differential Continuum Damage

Mechanics Model. Ti-6-4/SCS-6 rings would be fabricated using Textron Specialty Materials

grooved foil-fiber process and subjected to internal pressurization tests. These tests would be

performed to burst and separate rings would be tested cyclically.

As will be described, difficulties were experienced in performing fluid internal

pressurization at the required test temperature. As a result, the progam was redirected to the

design and fabrication of a test arbor for spin testing and the subsequent spin to burst of a test

TMC ring.

Additionally, several Ti-6-4 neat and Ti-6-4/SCS-6 TMC panels were made and forwarded

to NASA Lewis Research Center (LeRC) for use in the MMC Life Prediction Cooperative test

program.



2. PROCEDURES

2.1 TMC Ring Design and Manufacture

The TMC ring used in this study comprised 35 volume percent SCS-6 silicon carbide fibers

in a Ti-6A1-4V matrix. The nominal ring dimensions were 102 mm (4.0 inch) ID by 181 mm

(7.125 inch) OD by 6.6 mm (0.26 inch) thick. The TMC core had dimensions of 127 mm (5.0

inch) ID by 178 mm (7.0 inch) OD by 6.4 mm (0.25 inch) thick. A section diagram of the ring is

given in Figure 2. The original outer diameter of the ring was to be 203 mm (8.0 inch) but this

was reduced to 181 mm (7.125 inch) in order that flatness could be maintained during the hot

pressing operation.

] Material: SCS-6/T'_a-4

] Material: T'_o-4

I 127.0 mm (S.O00 in.) i

6.1 mm

(0.240 in.) 114.3 mm (4.500 in.) [

r1 i
-- [q lY/'I I F_I Pt

'1 m° J
•9 185.4 mm (7.300 in.}

G75¢_2

Figure 2. Dimensions of the SCS-6/Ti-6AI-4V TMC Ring.

The spiral grooved-foil preform process (ref. 1) developed by Textron Specialty Materials

(TSM), Lowell, MA, was used to make the TMC rings. The significant attributes of this

innovative approach to the manufacture of TMC ring structures are that it allows the precise

location and spacing of the silicon carbide fiber, as well as control of the width, thickness, and

shape of the reinforced region.

This is particularly important for the case of the turbine centrifugal impeller which has a

generic triangular shape in cross-section. Additionally, the grgoved-foil preform process allows a

variation in fiber volume fraction to be employed simply by c hanging the spacing of the grooves.

This can be an advantage in component reinforcement design where radial loads in the

component need to be managed.

The grooved-foil preform process makes use of photolitaography and photoetching to

precisely locate the spiral groove in the surface of the titanium foil, in this case Ti-6AI-4V foil

having a thickness of about 0.13 mm (5 mils). The photoetchl_d grooves are typically 0.09 to 0.10

mm (3.5 to 4.0 mils) deep. Both single-sided etched grooves or double-sided etched grooves can

be used for making TMC rings. The ring used for this program employed the double-sided

etching method. The grooves were displaced so that a triangular array of the SCS-6 fibers

resulted upon consolidation. It should be noted that other geometric arrays of fibers, e.g., square,
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arealsopossibleusingthegrooved-foilpreformprocess.Figure3 showsdiagramaticallythe
stepsinvolvedin makingthefiberarrangementfor thering usedin thisstudy.A micrographof
themicrostructurethat typifiestheprecisionlayupaffordedby thisprocessis shownin Figure4.

Consolidated
Plies

Figure 3.

G_

Schematic of the TSM Double-Sided, Grooved-Foil Process

Used to Make the TMC Ring.

Figure 4. Micrograph Illustrating the Precise Layup Afforded by the

Textron Specialty Materials Grooved-Foil Process.

5



TSM's initial trial to fabricatetheTMC ring wasnot wholly asuccess.Visualexamination
of theouterdiameterof thefiber zoneindicatedthatbuckling of thefibershadoccurred.The ring
wassubmittedfor ultrasonicnondestructivetesting.This testconfirmedthatbucklingof the
fibershadindeedoccurredatdiscretelocations.

A reductionin defectstatewasachievedin asecondring. However,ratherthanproceed
with furtherempiricalring fabricationtrials,NASA felt that thefabricationprocessshouldbe
modeledto provideinformationthatmightpinpointthecauseof fiberbuckling.NASA
conductedanumberof concentriccylinderelasticandelastic-plasticcreepanalysesof thedisk
manufacturingprocess.Severaltrendswerenoted,themostimportantbeingthatthetoolingmust
betakenintoaccountin orderto arriveatrealisticstressstatesandthattheinner toolingmust
havea low coefficientof thermalexpansion(CTE). Consequentlyit wasrecommendedthatTSM
increasetheCTE of innertoolingsothatit exceededthat of theTi-6A1-4Vcladmaterialof the
TMC ring. In this way the inner tooling would provide radial pressure during heat-up and hold

time during the consolidation process, but would allow release during cooldown to minimize

residual stress within the disk. The stress state from the NASA analysis were then used for a

buckling analysis to investigate whether sufficient hoop and radial stresses would be induced by

the non-optimal tooling configuration which caused the fiber buckling.

The buckling modeling work was conducted by Dr. Jalees Ahmad at AdTech Systems

Research, Inc., Dayton, Ohio. In the model, consideration wa_ given to consolidation induced

residual stresses and to the thermal and mechanical applied loads. Details of the analysis are

given in Appendix 1 of this report. It was concluded that a net compressive radial force acting on

a partially bonded or unbonded fiber segment could result in 5]ber buckling and even breakage.

Based on the NASA recommendations, remedial fabrication steps were undertaken by

TSM. This included the deployment of a graphite cylinder at the inner diameter of the TMC ring

as well as at the outer diameter. Experiments on larger diameter TMC rings had provided some

measure of success with this tooling setup.

The third ring manufactured was a success. Visual examination indicated no obvious flaws

and subsequent x-ray and CT-scan evaluation showed no evidence of delamination, poor bonding

of the Ti-6-4 with the SiC fiber, or buckling. An x-ray photo_raph of this ring in comparison with

a ring made by the original TSM procedure is shown in Figure 5.
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TSM Process

X-Ray

Figure 5. X-ray Photographs of Subsequent TMC Rings Made.

Left: Fiber Buckling Defects are Present in Ring

Made by Original TSM Procedure

Right: Defect-Free Ring Made after Change in Tooling



2.2 Test Fixture Design and Manufacture

2.2.1 Internal Pressurization

Initially it was proposed that a fluid internal pressurization method be used for burst and

cyclic testing. This method to test the TMC ring was chosen since it was a logical follow-on to

the previous work undertaken in a NASA-Pratt & Whitney cooperative program. There were

several advantages associated with this method of testing. First, it allowed the accurate

measurement of strain during monotonic burst and cyclic fatigue testing and thus the assessment

of damage accumulation in the TMC ring that would be used for lifing. Second, it is a low cost

test method. The disadvantage, of course, is that such a test method does not truly define the

stress state in a rotating body.

Despite this disadvantage it was decided to proceed with this test method. The National

Technical Systems, Saugus Division, California, was engaged for the design and fabrication of an

apparatus which would be used for testing.

An analysis to predict the burst pressure for the TMC ring geometry to be tested was

performed by Dr. Jalees Ahmad and Dr. Iftikhar Haq of AdTech Systems Research, Inc. This

work is included as Attachment 1, "Report on MMC Behavior Modeling Under Multiaxial

Stresses for MMC Ring Reinforced Impeller, Phase 1." The approach employed a nonlinear,

finite element analysis based micro-mechanics model, generating the unidirectional composites

global stress-strain response under biaxial (combined 0 and 90 degree) loading.

A literature search was undertaken to generate mechanical properties data for the SCS-6/Ti-

6-4 composite system. A listing of these references is given i:l Attachment 1, Appendices A and

B. Attachment 1, Appendix C, "Metal Matrix Composite Response Under Biaxial Loading,"

contains details of the analytical procedure and the specific results for this TMC ring. The burst

pressure of the ring at room temperature was predicted to be 770 MPa (112 ksi).

Figure 6 shows a longitudinal section drawing of the test assembly. It consisted of a

mandrel (drawing part 3) which is connected to a pump system. The pump is used to supply the

active light fluid, kerosene/oil, to the internal diameter of the test article, the TMC ring, by

locally expanding a metallic sleeve or bladder (drawing part 4). This sleeve is backed up by a

metallic spacer (drawing part 5).

The kerosene/oil fluid is contained by a pair of O-ring seals (drawing part 9). The test article

is positioned by a shrink disk (drawing part 7). The pressurized fluid locally expands the metallic

bladder, which is in' contact with the TMC ring, and thus applies an internal pressure to the ring.

In order to check out the internal pressurization method tests were performed at 21C (70F)

using a Maraging steel ring of the same dimensions as the TMC ring. The Maraging steel ring

was instrumented with strain gauges. Three pairs of strain gaages were affixed to the Maraging

steel ring. No difficulties were experienced in applying the irternal pressure in the ambient

temperature check of the test apparatus. The test was stopped after the internal pressure reached

64,700 psi to avoid possible yielding of the ring. The test denaonstrated that the apparatus would

operate effectively at 21C (70F).



Figure 6.

j Test Article

0.250 Typ _'-_" 0.063 Typ

G?S6e.6

Schematic of Internal Pressurization Test Apparatus Designed for Burst Test.

However, problems surfaced during testing at 316C (600F). In this test of the apparatus,

leakage of the 90 percent kerosene - 10 percent oil fluid was experienced when the applied pump

pressure reached 11,000 psi corresponding to an effective applied stress to the ring of 5,700 psi.

The maximum pressure that would be needed to burst the Ti-6-4/SCS-6 could not be reached. O-

rings of another polymer were installed and the test repeated. Again fluid leakage occurred and

the test discontinued. In a third test, the test apparatus was heated to 93C (200F) and the shrink

disks bolts retorqued at temperature in an attempt to tighten the system at temperature. However,

fluid leakage was again experienced.

In a final attempt to qualify the system, a modified mandrel with internal cartridge heaters

and a revised seal configuration was installed. The new seals consisted of a pair of teflon

encapsulated, stainless steel spring O-rings in combination with a pair of backup

polyetheretherketone (PEEK) polymer O-rings. Despite this effort leakage was again

encountered.

At this point it was decided that a solution to the leakage problem would not be found and

that an alternate method to test the TMC ring should be undertaken. In consultation with NASA

it was decided that spin testing should be employed. This required a significant effort since a

suitable test arbor needed to be designed. Spin testing, however, would have direct relevance to

the stresses experienced by a component in a gas generator or engine test.



2.2.2 Spin Test Arbor

The spin test arbor was designed by Mr. Sait Aksoy of "I'extron Lycoming, and later of

Aerospace Structural Research Corporation, Milford, CT. The arbor was designed so that the

ratio of the polar and transverse moments of inertia would be 1.04. For the arbor/TMC ring

assembly this ratio rises to 1.32, comfortably above the dynamically unstable value of 1.0.

A diagram of the spin test arbor is shown in Figure 7. Tile arbor consists of a central shaft

and two support disks with "soft touch" fingers to hold the TMC ring in position (ref. 2).

The clamping pressure, applied through a torque nut and locking washer, is transmitted to

the support disks by two "arm" disks. Minimal clamping pressure is applied to the TMC ring so

as not to interfere with the motion of the TMC ring as it expands during the spin test. A hollow

spindle connects the arbor to the drive motor.

In a photograph of the arbor and ring assembly (Figure 8), the castellated "soft touch"

fingers of the support disk are clearly visible. A cutaway, computer-generated picture of the

assembly is shown in Figure 9.

Prior to assembling the TMC ring into the arbor for the spin test, the ring was outfitted with

tangential and radial high-temperature strain gauges. Details of the positioning of the strain

gauges and the access ports for the lead wires is shown in Figure 10. The strain gauges were

mounted 90 degrees apart. At each location a tangential or hoop gauge was mounted at the inner

diameter of the SCS-6/Ti-6-4 composite zone and another at the outer diameter of the composite

zone. A radial gauge was located at the mid-radius of the composite zone. Since the radial strains

would be small, it was reasoned that the positioning of the radial gauge should be at the location

where the maximum radial strain would be expected. This configuration was arrived at after
discussion with NASA.

Mounting of the strain gauges was performed by HITEC Corp., Westford, MA. These were

FSM-06-3585 type sensors which would operate at the test te::nperature of 316C (600F). Epoxy

was used for the mounting medium and an epoxylite protective coating applied to the Constantan

lead wires. All splices were either tweezer welded or silver brazed. The strain gauge lead wires

were routed along the axis of the arbor shaft and joined to a slip ring assembly which in tum

connected to the strain data recorders. Approximately two feet of lead wire exited the shaft via

the hollow spindle.

Type K thermocouples were also attached to the TMC disk. Figure 11 shows a photograph

of the attached thermocouples as well as one set of strain gauges.
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Support Disk

Spindle _ Shaft

G'tr-_41.7

/TMC Ring

Support Disk

"_ _ Locking WL_ler

Figure 7. Cross-section Diagram of the Spin Test Arbor and TMC Ring Assembly.

G 7568-8

Figure 8. Photograph of Arbor and TMC Ring Assembly. Note the

Castellated "Soft Touch" Fingers of the Support Disk.

11



_.

Computer-Generated Picture of the Arbor and

TMC Ring Assembly with Cutaway.

Locltton.

2 PIaCN This Side

Figure 10. Diagram Showing Location of the Instruraentation (Strain Gauges and

Thermocouples) on the TMC Ring. View is from the Spindle Side.
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Figure 11. Photograph of the Assembled Strain Gauges (One Set) and the Thermocouple.
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3. RESULTS AND DISCUSSION

3.1 MMC Ring Spin Testing

Prior to spin testing an analysis was performed to predict the burst speed. This was

necessary since the arbor design must meet the burst speed as a minimum requirement.

3.1.1 Burst Speed Analysis

The three-dimensional, finite element model chosen for the TMC ring burst speed analysis

consisted of a twenty-noded brick mesh. A perfect bond was assumed between the Ti-6AI-4V

matrix and the fibers, as well as between the clad and TMC core. The ABACUS code was used

to calculate the burst speed based on the material properties for SCS-6/Ti-6AI-4V given in Figure

12. A maximum stress in the hoop direction was used as the failure criterion for the TMC ring.

Temp., E (I) F (t) UTS (I) UTS (t) CTE _1) CTE_I)
C (F) GPa (msi} GPa (ms0 MPa (ks[) MPa (k-s0 v {I) v (I) (10 -t_} (10 -_)

21 214 132 1770 453 0.28 0.28 1.94 2.89

(70) (31) (19) (257) (66) (0.28} (0.28) (1.94) (2.89)

316 200 130 1540 296 0.28 0.28 2.33 2.99

(600) (29) (19) (244) (43) (0.28"; (0.28) (2.33) (2.99)

G75¢dl_12

Figure 12. Material Properties for SCS-6/Ti-6AI-4V.

Figure 13 shows the radial and hoop stress distribution in the composite zone at a speed

corresponding to that of the hoop stress attaining the ultimate tensile stress of the composite in

the [0]. At a rotational speed of 64,000 rpm the maximum hoop stress is 1,517 MPa (220 ksi), a

value close to the ultimate tensile strength of the composite in the [0].

The maximum radial stress at this speed is 77 MPa (11 ksi). This value is below the
fiber/matrix debond stress.

Radial Stress

_1 (Mpa)

i ii'::
4 39.9

Hoop Stress

Max 1.517 2 1193

"'"' .,. ,3133,1'"9 1386
GrS_I-_3 6 145,

Figure 13. Radial and Hoop Stress Distribution in the Composite

Corresponding to a Rotational Speed of 64,000 rpm.
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3.1.2 Spin Test Results

The spin testing was performed at Test Devices, Hudson, MA. It was agreed with NASA

_at the test should be performed in three steps as follows:

a. Spin to 30,000 rpm at room temperature (duplicate runs)

b. Under vacuum, heat test chamber to 149C (300F) and again spin to 30,000 rpm

(again duplicate runs)

c. Heat the test chamber, again under vacuum, to 316C (600F) and spin to burst

The ambient temperature test to 30,000 rpm proceeded without incident. Strain data were

recorded at intervals of 10,000 rpm. Readings were obtained from all gauges except the Number

4 hoop. Adherence of the strain gauges to the TMC disk was good so this failure to record data

was attributed to the slip ring assembly. Recordings from the Number 1 hoop gauge were not

obtained after the 10,000 rpm mark. The data recorded are shown in Figure 14.

Test data for the 149C (300F) runs are shown in Figure 15. Again, not all strain gauges

provided recordings. No data were recorded for the two hoop gauges. Adherence of the strain

gauges themselves remained sound, so again the failure to record data was assumed associated

with the slip rings. Excellent data correspondence was obtained for the two outer diameter strain

gauges, Numbers 3 and 6.

Limited data obtained for the test at 316C (600F) are given in Figure 16. The Number 1

hoop gauge provided data at the 10,000 rpm mark, but thereafter no strain readings were

obtained. The fact that the Number 1 hoop gauge provided data in this run indicated proof that

failure to record was solely due to the slip ring assembly.

Strain data were obtained to a speed of 40,000 rpm when vibration problems with the arbor

and TMC ring assembly began. When a speed of 42,000 rpm was reached a decision was made to

stop the test because the vibration was excessive.

An analysis of the cause of vibration included the positioning of the strain gauges on the

TMC ring and the arbor itself. The possibility existed that the strain gauges could cause vibration

at the high rotational speeds because they were located in one quadrant of the TMC ring. Because

the strain gauges/slip ring assembly/recorder system were not functioning as had been planned, it

was decided to remove the strain gauges from the TMC ring and to rebalance the ring/arbor

assembly. Minor adjustments were also made to the arbor.

A second test at 316C (600F) was then performed. In this run a speed of 60,800 rpm was

achieved before the onset of excessive system vibration. A reassessment of the arbor revealed

that a 229 mm (9.0 in.) spindle had been used. This was shorter than had been specified since

rotor dynamics analysis showed that with a spindle of this length the critical speed would be

58,000 rpm, too close to the anticipated burst speed (ref. 3). For the final run to burst, the arbor

was fitted with a longer spindle, 289 mm (11.375 in.). This moved the critical speed to 33,000

rpm. Figure 17 shows the rotor dynamics model used to determine the critical speeds for the

longer spindle.

This final test run was completely successful with burst of the TMC ring occurring at a

speed of 61,200 rpm. This speed was only just below the predicted one of 64,000 rpm.

15
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Figure 14. Strain Gauge Data for the 21C (70F) Spin Test.
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Figure 15. Strain Gauge Data for the 149C (300F) Spin Test.
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Figure 16. Strain Gauge Data for the 31,_C (600F) Spin Test.
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Figure 17. Rotor Dynamics Model for a 289mm (11.375 inch) Spindle Length.
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3.2 NondestructiveEvaluation (NDE)

3.2.1 Pretest Evaluation

Pretest NDE evaluation was performed by NASA before and after heat treatment of the ring

to assess quality. Tests were performed using x-radiography, computerized tomography (CT) and

pulse-echo ultrasonic scans.

The x-ray NDE showed the fiber distribution to be well maintained during the consolidation

procedure, as would be expected for the grooved foil-fiber process, although the x-ray

photographs hinted at the presence of possible defects.

The CT slices were taken at the locations where the x-radiography indicated soundness as

well as the regions where possible defects were present. However, the CT analysis revealed no

major differences between the regions.

The pulse-echo ultrasonic scans also indicated that the ring was essentially free of

significant defects, although small differences in thickness of the clad over the composite region

and that in the unclad zones at the inner and outer diameter of the ring were revealed.

3.2.2 NDE Evaluation After Interrupted Spin Testing to 60,800 RPM

No major changes in ring integrity were observed using radiographic examination (Figure

18), although possible weaker interface regions were suggested. CT analysis was unable to

confirm such a change. However, the pulse-echo ultrasonic examination detected a flaw located

at 15 degrees from the zero fiduciary point and at the interface between the cladding on the inner

diameter and the composite. This is shown in Figure 19. A rrore detailed analysis is given in

reference 3.

3.2.3 Post Burst Test Evaluation

The TMC ring fractured into multiple pieces. With the help of liquid penetrants and optical

observations the pieces were repositioned by Dr. G. Baaklini of NASA. A photograph of the

reconstructed assembly is shown in Figure 20. Since the test vessel was not furnished with "soft

landing" protection for the burst ring, considerable damage t,_ the ring occurred during its

collision with the test vessel and the safety pit in which the test was conducted. Nevertheless,

careful examination of the parts (ref. 3) indicated that the region of primary failure occurred

within an angular domain of 0 to 110 degrees wherein three major cracks were visible. The first

crack was between 0 and 20 degrees, the second at about 70 degrees, and the third at the 100

degree mark. The region of most damage was diametrically opposite the region of primary

failure, i.e., pieces 5, 6, 7, and 8, shown in Figure 20.

Despite the large scale damage to the ring it was conch: ded that failure was due to tensile

fiber overload with some shear.
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Figure 18. X-radiograph of TMC after Spin Testing to 60,800 rpm
at 316C (600F) and before Final Burst.
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G7568-19

Figure 19. Pulse-echo Ultrasonic image of TMC after Spin Testing

to 60,800 rpm at 316C and before Final Burst.
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Figure 20. Photograph of Reconstructed TMC after Burst at 316C (600F).

3.3 Strain Data Analysis

Limited analysis of the strain data was performed. A comparison of the hoop strain

recordings with the finite element model analysis for the 21C (70F) test run is given in Figures

21 and 22. The ANSYS code was used to convert the rotational speed to stress valves using the

materials property data in Figure 12 and the specific ring geometry used in the test.

The correlation with the first run is good, indicating that the recording system, while not

perfect, was reasonable. Simple analysis shows the hoop elastic modulus to be about 207 GPa

(30 msi).

It is clear that the correlation with the second run is not as good. Poorer correlation was

obtained for the elevated temperature test runs, with the strain data indicating a stiffening of the

TMC. These data could not be rationalized since such behavior would not be expected. Some

change in composite modulus could possibly arise because of the nature of the test program in

that the TMC ring was subjected cyclic testing, although only a few cycles were imposed. The

effect of cyclic stress on the mechanical behavior of the composite was beyond the scope of this

revised program.
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4. CONCLUSIONS

(1)

(2)

(3)

Defect-free, small diameter, SCS-6/Ti-6A1-4V TMC rings were successfully made using a

NASA modified approach to the Textron Specialty Materials grooved foil-fiber process.

A spin test arbor employing "soft touch" fingers was designed having TMC ring burst and

low-cycle fatigue capability. The arbor performed as designed in the burst test and this

design is now being used by NASA for fatigue spin tests in other programs.

Spin tests were successfully conducted on an instrumented TMC ring at temperatures to

316C (600F).

(4)

(5)

The TMC ring burst at 316C (600F) occurred at a speed of 61,200 rpm, a value close to the

predicted speed of 64,000 rpm.

An intemal pressurization test apparatus for ring burst was designed and constructed. While

suitable for ambient temperature testing, the apparatus failed to reach the required pressure

for ring burst at 316C(600F) due to leakage of fluid around seals. Despite a number of

remedial steps this problem could not be overcome.
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1.0 Introduction

Due to consolidation process induced residual stresses and/or due to thermal and mechanical

applied loads, the fibers in a uniformly reinforced composite ring may be susceptible to elastic

instability. For example, Figure 1 shows schematic view of a metal matrix composite (MMC)

ring insert surrounded by metal on its inner and outer perimeters. The MMC insert has

continuous circumferential fibers. The configuration schematically shown in Figure 1 is under

consideration for providing a basis for the design of high performance rotors in advanced

aircraft engines.

During the cool down portion of the consolidation process, the MMC and, therefore, the fibers

can experience considerable amount of hoop compression because the coefficient of thermal

expansion (CTE) of the fiber material (such as silicon carbide) is much smaller than that of the

matrix material (such as a titanium alloy or intermetaUic) and of the metal surrounding the

MMC insert. A fiber may also be subjected to either tensile or compressive radial stress

(depending on a fiber's location within the insert).

In the present work a model is developed which can be used to investigate possible buckling of

a single fiber subjected to the combined action of hoop and radial stresses.

2.0 Fiber Microbucklinq Under Combined Hoop and Radial Stresses

In this section we first present the mathematical model of a single fiber under combined action

of hoop and radial stresses. The derivation of the mathematical model is followed by some

parametric results relevant to an MMC reinforced metal ring.

2.1 Mathematical Model

Consider a circular arc of length 2otR of a single fiber subjected to hoop force Ph, and uniform

radial force per unit length, Pr, as shown in Figure 2. The fiber is located at a radial distance

R from the ring center, which is large compared to the fiber radius (r). The fiber in Figure 2

can be considered to be a curved beam-column, thus allowing the use of the simple beam

theory in its analysis.

With reference to Figure 2, the governing equation for fiber deflection can be expressed as

follows:
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d2y _ _/ l_x 2 /----Wdx_+a-y +bex -c -_ .R2 1 -t

where,

a _- = X2cos o_-r/: (1 -cos a),

=0 (1)

(2)

b: =r/2 sin o_,

c =,7_[R_os,_0-co_,_)-Rsin_-,_]

x'-=Ph
El '

9

Ph :OH'/[ r-,

_2 _ Rp_,
EI

Pr =20rrR ,

(3)

(4)

(5)

(6)

oH -- Hoop stress in the fiber (positive when tensile),

o r = Radial stress in the fiber (positive when tensile),

E = Young's Modulus of the fiber material, and
I = Moment of inertia of the fiber cross-section.

The general solution of equation (1) is as follows:

y(x) = : +:,j,:_: _cj:_:_: x(_)_j:_:

R 2 - r2 dxsin(ax)+ _C1 cos(ar)a + C2 sin(ax)alia
J

1-2
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Figure 1: Metal Ring With MMC Hoop Insert
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Figure 2: Arc Segment of a Single Fiber Under

Radial and Hoop Forces
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whereCI andC2 arearbitrary constantsto be evaluatedusir_gspecificboundaryconditions.
The solutionis simplified somewhatwhenit is assumedthat R> > L, sothat in equation( 1),
(R2-x2) canbe replacedby R2. Then,

-a 2R 3 c+a 2R 2-2+b 2xa 2R 3 +x 2a 2+ Clcos(ax)+ C2sin(ax)

y(x) = a4 R3 - - (8)

For the case when both ends of the fiber segment in Figure 1 are pinned, displacement (y) is

zero at x = + L. Then, the constants C I and C2 of equation (8) are as follows:

R3 a2c_R2a2+2_L2a 2
Cl :=-

cos(a L) R 3 a 4

C2 :=

b2L

sin(a L) a 2

(9)

Equations (8) and (9) provide the complete solution for the i]ber pinned at both ends.

non-zero a and L, the solution becomes unbounded when a= x/2L. This provides the

following condition for the first buckling mode to occur when:

For

w: (10)
)$cos a - r/:(l -cos a) =4L:

In the special case of 77=0 and _=0, equation (10) becomes the same as Euler's buckling

equation for a column of length 2L. In general, equations (5) and (6) together with equation

(10) provide the following expressions for normalized critic:d hoop and radial stresses:

_ _r r - +2R (1 -coso_)i/ see a
0 ttc = _ _ T r

wr - _rr

_,c= _ +_.cos_ %]-_(l - cos a) 1

Note that in the above equations, L=R sin ot and

(ll)

(12)

=OrCi _n=°n//E and ;_r=OJEOHC =OHC//E , OrC
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2.1 Parametric Results

The model presented in the foregoing section can be employed to study the behavior of

an arc segment of a fiber which (over a length of 2aR) has either somehow debonded

from, or remained unbonded with the surrounding matrix.

Consider a fiber whose axis is at radial distance R from the ring center (Figure 1). If a

fiber segmenthas totally debonded from the matrix on both sides (i.e. along R+r and

R-r), then there is no net radial force acting on the fiber segment. Thus, Ph ;_ 0 and

Pr =0. On the other hand, if the fiber segment is detached from the matrix only on

one side, there is a net radial stress on the fiber segment, i.e. Ph ;_ 0 and Pr ;_ 0. In

order to employ the model of the previous section to the case of Pr _ 0, it must be

assumed that the net radial force remains unchanged while the fiber segment deforms.

This implies that the matrix material on either side of the fiber segment offers no

resistance to deformation. In the following we present results of the above two cases.

2.1.1 .Case 1" Ph _ 0 and Pr =0

Figures 3(a, b, c and d) show the deflection behavior of a fiber segment subjected to

increasingly compressive value of hoop stress. In these figures, the hoop stress is

indicated as 'sh', the vertical axis shows deflection in inches, and the distance x see

(Figure 2) is in inches. In all cases, the deflection profile (which is indicative of

buckling mode shape) is the same. In the plots, the following numerical values for the

various parameters in equations (8) and (9) were used:

fiber diameter (2r) =0.00551 inch,

fiber material's Young's Modulus (E)=58000 Ksi, and

fiber location (R)=3.5 inch in Figures 3(a, b and c) and 4.0 inch in Figure 3(d).

The plots in Figure 3(a, b and c) were obtained for increasing value of the half

subtended angle u from 1.0 degree to 10.0 degrees. The figures show a strong effect

of u on the hoop stress at which deflections begin to grow indefinitely. As seen, this

value of hoop stress varies from approximately 70 Ksi for or= 1.0 degree to

approximately 2.5 Ksi for 5=5.0 degrees and less than 7.5 Ksi for or= 10.0 degrees.

For a given o_, the effect of changing fiber location within the ring has a relatively

small effect on the hoop stress close to instability. This is seen by comparing Figures

3(b) and 3(d) which both correspond to t_=5.0 degrees, but to R=3.5 inch and R=4.0

inch, respectively.

Figure 4 shows the critical hoop stress values in Ksi (vertical axis) for various ot

and R combinations. As noticed in Figure 3, the critical hoop stress value falls

rapidly with o_ and reaches less than 10 Ksi for ot > 2.5. This is more clearly seen

in Figure 5 which shows the critical hoop stress values for a fiber segment located

at R=3.5 inches.
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2.1.2 Case 2: Ph _ 0 and Pr ;_0

In this case we consider the combined effect of hoop and radial forces acting on the

fiber segment. But before investigating the combined effect it is instructive to look at

the deflected shape of the fiber segment in Figure 6 only under the action of a uniform

radial stress directed toward the center of the ring. In the particular case shown in

Figure 6, hoop stress=0.0, a=5 degrees and R=3.5 inches. It is seen that the fiber

deflection is in the opposite direction than that due to compressive hoop stress (Figure

3). Figures 7 and 8 show the same result when a compressive hoop stress of 1.0 Ksi

and 2.0 Ksi, respectively, is present. In Figure 8, the deflection shape is seen to

change as increasingly compressive radial stress is applied.

Figure 9 shows critical hoop stress value in Ksi as a function of a and compressive

radial stress. It is interesting to note that a 16ositive buckling hoop stress can occur if a

sufficiently large compressive radial stress is present.

Figure 10 shows critical radial stress value in Ksi as a function of c_ and compressive

hoop stress. Again it is seen that a positive buckling radial stress can occur if a

sufficiently large compressive hoop stress is present.

3.0 Conclusions

The model developed in the present work can be effectively used to investigate

microbuckling of individual fibers during the consolidatton of an MMC reinforced

rotor. The parametric analyses performed using the model indicate that a net

compressive radial force acting on a partially unbonded (or debonded) fiber segment

can result in the mode of fiber break sometimes observed in MMC reinforced rings.

In this mode the broken fiber ends are found to point radially inward toward the center

of the ring. The parametric studies show that this mode is possible with or without the

presence of hoop stress in the fiber segment. A plausible explanation for the observed

fiber breaks is that at certain locations of outer fibers in the ring, lack of bond or

debond occurs on either side of the fiber (i.e. at R+r o_ R-r) resulting on a net

negative radial force acting on the fiber segment. This force in conjunction with hoop

stress causes inward buckling of the fiber segment. Detailed stress analyses of the

MMC ring consolidation process are needed to determine whether the quantitative

values of critical hoop and radial stress values estimated in the present work are indeed

possible.
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Deflection
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0.04

0.06 0

Figure 3(a): Deflection of fiber segment (vertical axis in inches) subjected to increasing compressive hoop
stress 'sh' (in lCsi). The fiber segment length is along the x axis (in inches), R=3.5 inches, a= 1.0 degree.
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Deflection
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0"15 i
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0.3 0

Figure 3(b): Detlection of fiber segment (vertical axis in inches) subjected to increasing compr_ive hoop
stress 'sh' (in Ksi). The fiber segment length is ahlng the x axis (in inches), R=3.5 inches, _=5.0 degrees.
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Deflection
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sh.

Figure 3(c): Deflection of fiber segment (vertical _xis in inches) subjected to increasing compressive hoop
stress 'sh' (in l,L_i). The Iiber segment length is along the x axis (in inches), R=3.5 inche% a= 10.0 degree-_.
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Deflection

x sh

0.3
0

Figure 3(d): Deflection of fiber segment (vertical axis in inches) subjected to increasing compressive hoop

strL_s 'sh' (in Ksi). The fiber segment length is along the x axis (in inches), R=4.0 inches, a=5.0 degrees.
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Introduction

AdTech Systems Research, Inc. is pleased to submit this report
on the Phase I effort under Contract No. NAS3-27027. The Phase I

Statement of Work (entitled "Analytical Verification) required
AdTech to perform the following two activities:

(1) Perform a literature search to obtain mechanical and

physical property data on Ti-6AI-4V/SiC continuous fiber

composites.

(2) Utilize collected data and selected analytical models to

predict deformation response and burst pressure in an MMC ring to

be tested by Textron Lycoming.

Both the above activities have been completed. The results are

given in the following paragraphs.

Results of Literature Survey

The following two methods were used to conduct the search for

data on Ti-6-4/SiC composites:

(1) Contact key technical personnel at main engine

manufacturing companies.
(2) Computerized search

The first method resulted in acquiring a GE Aircraft Engines (GEAE)

document entitled "Survey of Available Literature: Mechanical

Properties of Ti-6AI-4V/SCS-6 and Ti-14AI-21Nb/SCS-6 Metal

matrix Composites", prepared by G. A. Smith on March 29, 1990.

This document provided extensive amount of data and important

references on the composite of interest. A copy of this document was

given to Dr. Steve Arnold of NASA Lewis Research Center on

November 2, 1993 as instructed by Dr. Tapas Mukherji of Textron

Lycoming. It is not clear if AdTech can provide a copy directly to

Textron Lycoming as part of the present document.

The computerized search resulted in identification of a number

of documents listed in Appendix A. The most relevant of these

documents are described in Appendix B. Appendices A and B do not

contain Textron Lycoming data which was provided to NASA LeRC as

part of a bimonthly report.

Burst Test Analysis

The analysis approach followed in predicting the deformation

behavior and burst pressure in a MMC ring (to be tested by Textron

Lycoming) consisted of the following two steps:



|
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(I) Using a nonlinear finite element analysis based

micromechanics model, generate the unidirection composites global

stress-strain response under biaxial (combined

loading. This procedure is described in detail in

1 (a-e) shows predicted global stress-strain

temperature under selected combinations of 0

and 90 degree (x-direction) loading.

0 and 90 degree)

Appendix C. Figure

response at room
degree (z-direction)

The predicted composite stress-strain curves as well as Ti6-4

stress-strain curve were used as part of the input to an axisymmetric

finite element analysis of the MMC ring (Figures 2 and 3) subjected

to uniform internal pressure. The elastic constants for the composite

were found using the micromechanics approach in the ASCA

computer code. These constants are shown in Table I. Figure 4

shows the result of finite element analysis in the elastic range in
terms of stresses along a ring radius. The Hill's criterion was used to

model yielding of the composite and isotropic hardening was

assumed. The Ti6-4 layers were assumed to be isotropic. Figures

5(a) and 5(b) show the elastic-plastic analysis results at strain gage
location 1 which is at the inside boundary of the MMC insert and

experiences the highest stress.

Room temperature data on Ti6-4/SCS-6 panels suggests that 0

degree composite (or in-situ fiber) strain at failure to be

approximately 1.0 percent. In the form of a ring, the fibers may

have up to 0.11 percent initial strain. Assuming no significant

processing related differences between composite panels and rings,

we choose the strain of failure to be 0.:_9 percent. Then, using
Figures 5 (a and b), the burst pressure for l_.he ring is estimated to be
770 MPa.

Table 1. Constituent and Composite Elastic Constants

Fiber: E = 392 GPa, 1) = 0.25

Matrix: E = 110 GPa, 1) = 0.30

Composite (1)f = 0.35, unictirectional):

E 11 = 211.7 GPa

E22 = E33 = 169.6 GPa

1)12 = 0.3

1)13 = V23 = 0.22
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MMC Ring Axisymmetric Model Geometry
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References and Abstracts

(1) Bandyopadhyay, S, Mechanical and Fracture properties of Metal

Matrix Composites, Conference: Materials Processing and Performance,

Melbourne, Victoria, Australia, 2-5 Sept. 1991, p. 187-190

Abstract: A brief overview of the mechanical and fracture properties of

metal matrix composites (MMCs), in particular discontinuously reinforced AI

alloys, is presented. Mechanical properties discussed include uniaxial tensile

strength, modulus of elasticity, longitudinal and transverse strength and

stiffness. Properties of B/AI, SiC/AI, SiC/Ti- 6AI- 4V and 6061 A1 are shown.

Factors contributing to yield and tensile strength of particulate SiC/AI
composites are discussed. Matrix materials and content and type of

reinforcement have been shown to be important parameters. Extensive work
on fracture properties of MMCs is also reported. Graphs. 7 ref.

(2) Wright, P K ; Nimmer, R ; Smith, G ; Sensmeier, M ; Brun, M, The
Influence of the Interface on Mechanical Behavior of Ti° 6AI-

4V/SCS-6 Composites., GE Aircraft Engines, General Electric Corporate

Research and Development, Conference: Interfaces in Metal-Ceramics

Composites, Anaheim, California, 18-22 Feb. 1990, p. 559-581.

Abstract: The mechanical properties of Ti- 6AI- 4V/SCS-6 composites are

influenced in various degrees by the nature of the interracial bonding

between the fiber and the matrix. A combination of experimental and
analytical evidence is presented which identifies the interface bonding as

weak (in comparison to matrix yield strength) with interfacial strength
primarily controlled by thermal residual clamping stresses. Loading the

composite under various stress states produces various sensitivities of
behavior to the interface; the component of tensile loading perpendicular to

the fiber appears to be the key factor governing response, with greater
amounts of transverse tension promoting interface separation. Thermal

treatments to change the interface character influenced some properties but

not others, depending on the sensitivity of the property to interfacial

strength. Graphs, Photomicrographs. 14 ref.

(3) IMAI, YOSI-IIO; SHINOHARA, YOSHIKAZU; IKENO, SUSUMU; SHIOTA,

ICHIRO, The relationship between interfacial reaction and tensile

strength of SiC filament reinforced Ti alloy composites, Proceedings

of the 5th Japan-U.S. Conference on Composite Materials, Tokyo, Japan, June
24-27, 1990, p. 347-354.
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Abstract: Ti-alloy-matrix composites are fabricated by means of diffusion

bonding and heat-treated, and an investigation is undertaken of the reaction

products and their effects on the composites' strengths. The Ti alloys include
Ti-6AI-4V and Ti-8Mofri-6AI-4V and are reinforced with SiC filaments and

heat-treated at 1023-1123 K for 32.4-360 ks. The strength of the Ti matrices
is found to decrease by up to 60 percent at the higher-temperature longer-

duration treatments. The reaction products include TiC on the filament
surfaces and a layer of TiSSi3 on the TiC surface, and the reaction-rate

constants and activation energies are given. The results suggest that the

alloying elements effectively inhibit the interface reaction but that defects in

the reaction products causes a significant decrease in composite strength.

(4) MIYASE, A.; WANG, S. S. (Illinois, University, Urbana), Shear creep
deformation of SCS6/Ti-6AI-4V metal matrix composite at elevated

temperatures, Proceedings of the 5th Japan-U.S. Conference on Composite
Materials, Tokyo, Japan, June 24-27, 1990 , p. 283-291.

Abstract: Monotonic shear and shear creep experiments are conducted on
SCS6]Ti-6AI-4V metal matrix composite using an Iosipescu-type shear test

method at room and elevated temperatures. First, a brief description is given
on the MMC material and the specimen design for the experiments. Also,

detailed experimental procedures for the monotonic shear and shear creep

tests are described. Discussion is made on the shear creep constitutive

relationships, shear creep deformation and failure modes as well as the

effects of the applied shear stress levels on :;hear creep rates.

l

(5) Jeng, S. M.; Yang, J. -M.; Yang, C. J., Fracture mechanisms of fiber-

reinforced titanium alloy matrix composites. Part II. Tensile

behavior, Materials Science & Engineering A: Structural Materials:

Properties, Microstructure and Processing v A138 n 2 Jun 15 1991 p 169-180

Abstract: The mechanical properties and deformation mechanisms of several

unidirectional SCS-6 fiber-reinforced titanium alloy matrix composites under

tensile loading were studied. Three different titanium alloys were used as

matrix materials: Ti-6AI-4V, Ti-15V-3AI-3Cr-3Sn and Ti-25AI-10Nb. The key

microstructural parameters which dominate the stress-strain response,

damage initiation, damage growth and fracture behavior of the composites
were identified. The strength and Weibull modulus of the interfacial reaction
layer as a function of its thickness were also quantified. Finally, the tensile

fracture mechanisms near the interface region were classified on the basis of
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the ratio of fiber strength ( sigma I/f) to interfacial shear strength ( tau /li)

vs. matrix toughness. 20 Refs.

(6) Curtin, W A, Ultimate Strengths of Fibre-Reinforced Ceramics and

Metals, BP Research Centre, Conference on Fatigue and Fracture of Inorganic

Composites, Cambridge, UK, 31 Mar.-2 Apr. 1992, Composites, 24,(2), p. 98-
102

Abstract: A theory to predict the ultimate tensile strength of fibre-

reinforced ceramics (CMCs), i.e. Nicalon/LAS, SCS-6/LAS, Nicalon/Soda line,

Nicalon/carbon, and Nicalon/CAS is presented. The theory incorporates the

statistical nature of the fibre strength and the presence of fibre/matrix

sliding, the latter allowing broken fibres to retain some load-carrying

capacity, and yields a simple analytic expression for the strength.

Comparisons with measurements on a wide range of CMCs indicate that the

theory improves considerably on rule-of-mixtures estimates. An extension of

the concepts used for CMCs to metal-matrix composites (MMCs) with weak,

sliding fibre/matrix interfaces is then proposed, and the resultant predictions
for MMC strengths agree well with data on SCS-6/titanium-alloy (Ti- 6AL-

4V, Ti- 24A1- l lNb) materials. Graphs. 15 ref.

(7) Arsenault, R J, Tensile and Compressive Properties of Metal

Matrix Composites, University of Maryland, Publ: Academic Press, Inc.,

1250 Sixth Ave., San Diego, California 92101, USA, 1991, Metal Matrix

Composites: Mechanisms and Properties, p. 133-167

Abstract: The tensile and compressive properties of discontinuous (DMMC)

and continuous (CMMC) composites are discussed. The discussion is almost
exclusively in terms of tensile properties with some discussion of compressive

properties and of the mechanisms of strengthening. The section on DMMCs

focuses on SiC/A1 composites. Matrix alloys considered include 1100, 2024,

2124, 5083, 6061, and 7075. The section dealing with CMMCs is divided into
five parts: rule of mixtures (ROM); CMMCs that follow ROM predictions;

CMMCs that do not follow the predictions of ROM; a comparison of the

longitudinal and transverse properties; and compression vs. tensile strengths.

Data is included in this section for AI sub 20 sub 3 /5056 AI, C/AI, SiC/Ti-

6AI- 4V, Borsic/Ti- 6A1- 4V, and SCS-6/Ti- 6Al- 4V CMMCs. Graphs. 42 ref.

(8) Yang, C. J.; Jeng, S. M., Yang, J. M., Interfacial properties

measurement for SiC fiber.reinforced titanium alloy

Scripta Metallurgica et Materialia v 24 n 3 Mar 1990 p 469-474
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Abstract: The purpose of this work was to use an indentation technique to

measure the interracial deb0nd strength and frictional stress for various fiber

reinforced titanium alloy matrix composiles. The quantitative interfacial

mechanical properties will be useful for understanding the failure behavior

and deformation mechanisms of these composites. The composites used in this

study wore SiC fiber (SCS-6) reinforced alpha //2-titanium aluminides. Ti-at%

25 Al-10 at% V-3at% AI-3at% Cr-3at% Sn (Ti-15-3 3) and Ti-6at% AI-4at% V

(Ti-6-4). Ti-25-10 alloy contains both alpha //2 and beta phase, and the

presence of beta -phase is due to the addition of beta -stabilizing elements

] such as Nb, Me and V. Ti-6-4 is an alpha plus beta alloy and Ti-15-3 is a
! metastable beta titanium alloy. A B//4C coated B fiber-reinforced Ti-6-4

composite was also used to asses the effect of fiber surface chemistry on the

interfacial properties. The unidirectional composite panels were consolidated
by the vacuum diffusion bonding technique. The fiber/matrix interfacial

debond strength was measured by a Vickers microhardness indentator. 12
Refs.

l

(9) Watson, M C ; Clyne, T W, The Tensioned Push.Out Test for
Fibre/Matrix Interface Characterisation Under Mixed Mode

Loading, Materials Science and Engineering A A160, (1), 1-5 15 Jan. 1993

Abstract: A novel test procedure is suggested for the exploration of

interracial mechanical properties in fibre-reinforced composites. This is based

on the established single fibre push-out test, which has the advantage of

being applicable to specimens which can be routinely produced from normal

unidirectional long fibre composite material. The suggested modification

involves the application of equal biaxial in-plane tension while the push-out

testing is carried out. This allows the interface to be subjected to various

combinations of mode I and mode II loading, ranging from pure opening to

pure shear. Hence, it should be possible to obtain data characterising the
resistance to interfacial debonding and disengagement over all of this range.

Illustrative data are presented here for thanium-based composites, in the

form of measured critical shear stresses fol various applied normal stresses
at the interface. Graphs. 32 ref.

(10) Nimmer, Ronald P.; Bankert, R. J.; Russell, Edward S.; Smith, Gary A.;

Wright, P. Kennard, Micromechanical modeling of fiber/matrix

interface effects in transversely loaded SiC/Ti-6-4 metal matrix

composites, Journal of Composites Technology & Research v 13 n 1 Spring

1991, p 3-13
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Abstract: The transverse tensile behavior of a composite composed of
unidirectional silicon-carbide fiber (Textron SCS-6) in a Ti-6AI-4V matrix is
examined with emphasis on the effects of fiber-matrix interface strength. The
residual stresses as a result of a mismatch in the coefficients of thermal

expansion of silicon carbide and titanium are estimated analytically and

compared with measurements made using X-ray diffraction techniques.

Idealizing the composite as a regular rectangular array of fibers in an

elastoplastic matrix, the transverse tensile stress-strain behavior is predicted

under the assumptions of an infinitely strong interface as well as an interface

without tensile strength. These results are compared with experiments

conducted at three different temperatures. The agreement between

experiment and predictions based on an interface without tensile strength is
extremely close. The modeled stress-strain curves predict a well-defined
knee in the transverse tensile stress-strain curve associated with the

separation of fiber and matrix at their interface. The same stress-strain

behavior is observed experimentally. Results of edge replica experiments and

mechanical unloading from stress levels above the knee are also presented as
additional evidence of the association of fiber-matrix separation with the

knee in the transverse tensile stress-strain curve. (Author abstract) 17 Refs.

(11) Brayshaw, J B ; Pindera, M -J, The Effect of the Matrix Constitutive

Model on Residual Thermal Stresses in MMC., Conference: Mechanics of

Composites at Elevated and Cryogenic Temperatures, Columbus, Ohio, USA,

16-19 June 1991, p. 23-38

Abstract: A thermomechanical analysis of advanced composites (B/A1, Gr/AI,

SiCfri), in a wide temperature range is presented. This analysis is based on
the micromechanics method of cells. An incremental formulation of the

micromechanics model is developed to facilitate the use of various inelastic

constitutive theories. These theories incorporate time-dependent and

temperature-dependent features for modeling different types of metal

matrices (e.g. A1 2024). The constitutive models include the Bodner- Partom

unified theory of viscoplasticity, the incremental plasticity model, and a

power-law creep model. The effect of the cooling rate, taking into account

temperature-dependent matrix properties, on residual thermal stresses is

subsequently investigated for a SiCfri (Ti- 6AI- 4V) composite using the
different models for the matrix phases. Predictions generated using the

micromechanics method are compared with available results of finite-element

analysis. Graphs. 8 ref.

(12) Sun, C T ; Chen, J L ; Sha, G T ; Koop, W E, Mechanical
Characterization of SCS-6/Ti-6-4 Metal Matrix Composite,
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University, General Motors, Air Force Wright Aeronautical Laboratories,

Journal of Composite Materials 24, (10), Oct. 1990, p. 1029-1059.

Abstract: Off-axis tension tests were performed on SCS-6/Ti-6-4 metal

matrix composite. A one-parameter plasticity model was used to characterize

the elastic- plastic properties. In addition, a micromechanical model was

developed, assuming elastic fiber and elastic- plastic matrix properties. This

model was employed to relate the apparent yielding with the fiber/matrix

separation in the MMC. From the micromechanical model, the fiber/matrix

interracial bond strength was estimated and, with the aid of a damage model,

the nonlinear off-axis stress- strain curves were accurately predicted. Graphs.
16 ref.

..1

!

(13) Eggleston, M. R.; Krempl, E., Modeling the transverse creep of

titanium-based metal matrix composites, Damage Mechanics in

Composites American Society of Mechanical Engineers, Applied Mechanics

Division, AMD v 150. ASME, New York, NY, USA. p 313-326, 1992

Abstract: The creep deformation of continuous fiber, titanium-based metal

matrix composites in the transverse orienlation was modeled. Creep tests
were performed on a composite of SCS-6 silicon carbide fibers in a matrix of

Ti-6AI-4V with a nominal fiber volume fraction of 28%. Tests were performed

at 480 degree C (900 degree F) in an air environment. The creep of the

transverse composites was generally faster than that of the monolithic matrix

material. The unified viscoplasticity theory based on overstress (VBO) was
used to model the matrix in a finite element analysis. The VBO theory was

able to model most of the observed matrix behavior. Composite models were

created with both strong and weak bonding between the fiber and matrix.

The composite creep tests possessed a creep rate that was between the
behavior of the pure matrix and that of the weakly bonded interface model.

SEM analysis of the failed specimens supported the conclusion that debonding
of the fiber and matrix occurs in the test, and is a source of an increased

creep rate. Additional improvements in the modeling of the fiber-matrix
interface are required for more accurate prediction of the composite's creep
behavior.

(14) Sehwenker, S.W., Roman, I., and Eylc_n, D., Creep Behavior of SCS

6Ti-6AI-4V Unidirectional Composites, Proceedings of the

International Conference on Advanced Composites 1993, University of

Woolongong, Australia, Feb. 15-19, 1993.
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(15) Ahmad, U. Santhosh and I.U. Haq, ON TIME DEPENDENT
DEFORMATION MODELING OF METAL MATRIX COMPOSITES, ASME

Winter Annual Meeting, Nov 27-Dec 02, New Orleans, Louisiana.

Abstract: A simple engineering model is presented to predict time

dependent response of unidirectional metal matrix composites (MMCs) under

sustained loading in the fiber direction. The model takes into account the

effect of matrix creep and consolidation process induced residual stresses.

Model predictions are compared with experimental data on SCS-6/Ti-6AI-4V

composite and with nonlinear finite element analyses. Also, a simple

modeling approach is presented to assess the effect of possible fiber

fractures on the composites global strain-time response.

(16) E1-Soudani, S M ; Gambone, M L, Strain-Controlled Fatigue Testing

of SCS-6/Ti- 6Al- 4V Metal-Matrix Composite, Rockwell International,

General Motors, Conference: Fundamental Relationships Between

Microstructures and Mechanical Properties of Metal Matrix Composites,
Indianapolis, Indiana, 1-5 Oct. 1989, p. 669-704

Abstract: A high sensitivity method is developed for strain-controlled

fatigue testing of Ti- 6Al- 4V/SiC at room and elevated temperature in air
environment and is shown to provide much better insight, by comparison

with load-controlled tests, into the mechanisms of damage growth and

gradual degradation of metal-matrix composites. The fatigue behavior of Ti

matrix composite is characterized by three basic regimes of damage

development corresponding to three distinctive regions of the strain- life

curve, respectively. Early fatigue damage was found to take place on the first

few cycles in the transverse test orientation. The low transverse strength and

the brittle nature of the fiber/matrix interface are the two prime contributors

to the low strain- life behavior of the Ti metal-matrix composite loaded

normal to the fiber direction. Graphs, Photomicrographs. 5 ref.

(17) Lawrence, C.W.; Briggs, G.A.D.; Scruby, C.B., Acoustic microscopy of

ceramic-fibre composites. Part III. Metal.matrix composites, Journa

of Materials Science v 28 n 13 Jul 1 1993. p 3653-3660

Abstract: Scanning acoustic microscopy (SAM) has been used to study metal

matrix composites (MMCs) reinforced with silicon-carbide monofilaments. For

most of the specimens the matrix was Ti-6AI-4V, but Ti//3A1 and 6061 AI
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matrices were also examined. The titanium-matrix specimens were subjected

to a range of thermal ageing treatments to investigate potential in-service

degradation. The main effect was progressive deterioration of the fibre-

matrix interface. In the as-received material the carbon-rich coating

protected the SiC by forming a reaction layer with the titanium. As a result of

ageing, the reaction layer was penetrated adjacent to the beta -phase

titanium grains. More extensive ageing caused the carbon-rich coating to

degrade and eventually disappear. The final stage of deterioration was direct

attack on the SiC. Cracks and porosity between fibres were observed in some

specimens, probably due to poor diffusion bonding during fabrication. Fine

radial microcracks were observed in an annular region inside the mid-radius
-I of some fibres; they are believed to be a consequence of stress relief during

thermal ageing. These cracks could not be observed optically. The extra

sensitivity of acoustic microscopy is due to the reflection of Rayleigh waves

by tight closed cracks. 14 Refs.

A

1

(18) Karpur, P.; Matikas, T.; K.rishnamurthy, S., Matrix.fiber interface
characterization in metal matrix composites using ultrasonic

imaging of fiber fragmentation, Proceedings of the 7th Technical

Conference of the American Society for Composites, 1992

Abstract: This paper presents an ultrasonic method of imaging used in

conjunction with the fiber fragmentation test of a model composite sample

made of a single SCS-6 or SIGMA fiber embedded in matrix of Ti-6AI-4V or

Ti-14AI-21Nb. The imaging technique is very useful for the estimation of the

fiber fragmentation size which is an indicator of the mechanical properties of

the interface between the matrix and the fiber. Other applications of

ultrasound for the characterization of the composite system will be presented

and the future directions of research will be discussed. (Author abstract) ?
Refs.

(19) Ferraris, M.; Badini, C.; Marino, F.; Marchetti, F.; Girardi, S., Interfaciai

reactions in a Ti.6AI-4V based composite: Role of the TiB//2

coating, 3ournal of Materials Science v 28 n 7 Apt 1 1993. p 1983-1987

Abstract: The characterization of TiB//2/C-coated SiC fibres and their

interface region in a Ti-6AI-4V based compo:_ite has been performed by using

scanning electron microscopy (SEM), ¢ner_iy-dispersion X-rays (EDX) and

Auger electron spectroscopy (AES). The features of the as-received fibre and

the reactivity between fibre and matrix occurring during preparation of the

composite have been studied in this paper The interaction of the TiB//2

external coating of the fibre with both the adjacent carbon layer and the
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titanium-based matrix is already appreciable in the as-received composite:

TiB needles grow from TiB//2 towards the matrix and a new layer containing

C, Ti and B appears between TiB//2 and C. The thicknesses of the original

carbon and TiB//2 fibre coatings decrease in the composite from 1000 nm to

400 and 800 nm, respectively. The TiB//2 inhibits the reaction between SiC

and Ti: there is no evidence of Si//xTi//y brittle phases. (Author abstract) 24
Refs.

(20) Hirose, A.; Matsuhiro, Y.; Kotoh, M.; Fukumoto, S.; Kobayashi, K.F., Laser-

beam welding of SiC fibre.reinforced Ti-6AI.4V composite, Journal

of Materials Science v 28 n 2 Jan 15 1993. p 349-355

Abstract: Three- and ten-ply SiC fibre-reinforced Ti-6AI-4V composites

were jointed using a laser beam. With a 300 mu m thick Ti-6AI-4V filler

metal, fully penetrated welds without apparent fibre damage, could be

obtained in welding directions both parallel and transverse to the fibre

direction by controlling the welding heat input. Excess heat input resulted in

the decomposition of SiC and subsequent TiC formation, and also caused

degradation of joint strength. The welding of the three-ply composite in

which full penetration was achieved at lower laser power, exhibited higher
flexibility in heat input than that of the ten-ply composite. Heat treatment at

1173 K after welding improved the joint strength because of the

homogenization of the weld metal and decomposition of TiC. The strengths of
the transverse weld joints after the heat treatment were approximately 650

and 550 MPa for the three- and ten-ply composites, respectively. With the

welding direction parallel to the fibre direction, the strengths both parallel

and transverse to the weld joint were equivalent to those of the base plate.
(Author abstract) 6 Refs.

(21) Chan, K.S., Effects of interface degradation on fiber bridging

composite fatigue cracks, Acta Metallurgica et Materialia v 41 n 3 Mar

1993. p 761-768

of

Abstract: This paper presents a theoretical analysis that examines the effects

of cyclic degradation of interface on fiber bridging of fatigue cracks in metal-

matrix or intermetallic-matrix composites. Using fiber bridging models and

crack-tip micromechanics results available in the literature, the frictional

stresses on individual fiber/matrix interfaces located within the bridging zone

in the wake of a fatigue crack in a SCS-6/'I'i-6AI-4V composite are calculated.

The results are used to demonstrate that a reduction of the interface friction

stress by fatigue can lead to a decrease of the fiber bridging stress, and an

increase in the near-tip stress intensity range. The consequence is that the

A-9



Ii

near-tip stress intensity range and, thus, the crack growth of a bridged

fatigue crack are sensitive to cyclic interface degradation and the distribution
of the frictional stress within the bridged zone. (Author abstract) 24 Refs.

!

(22) Hirose, A.; Kotoh, M.; Fukumoto, S.; Kobayashi, K. F., Diffusion

of SiC fibre reinforced Ti-6AI-4V alloy., Materials Science and

Technology v 8 n 9 Sep 1992 p 811-815

bonding

Abstract: A continuous SiC fibre reinforced Ti-6AI-4V composite was

diffusion bonded to itself. Incorporation of a Ti-6AI-4V interlayer and use of

an etching treatment to smooth the laying surface improved the diffusion
bondability of the composite. The bond strength increased with bonding time

up to 10.8 ks under 10 MN m** minus **2 pressure at 1173 K, at which time,

after reaching the maximum value of approximately 700 MN m** minus **2,

the strength was saturated Corresponding to this behaviour, the bonding
between the interlayer and the composite matrix was completed after a

bonding time of 10.8 ks. Bonding between the fibre and the interlayer was
considered not to contribute to the joint strength on the basis of observation

of the fracture surfaces. The bond strength therefore seems to be controlled

by the bonding of the interlayer and the c,3mposite matrix. (Author abstract)
7 Refs.

I

(23) Stock, Smart R.; Breunig, Thomas M.; Guvenilir, Abbas; Kinney, John H.;
Nichols, Monte C., Nondestructive X-ray tomographic microscopy of

damage in various continuous-fiber metal matrix composites., AST_

Special Technical Publication n 1128., p 25-34, 1992.

Abstract: X-ray tomographic microscopy (XTM), a high resolution variant of

industrial computed tomography, provides nondestructive, high-resolution

'sectioning' of samples and allows three-dimensional mapping of X-ray

absorptivity multiple times during an in-situ experiment on a single

msample. The capabilities of XTM for damage accumulation studies in

composites are described in this paper, with emphasis on what can be

accomplished using monochromatic synchrotron radiation. Results are shown
for five continuous-fiber metal matrix composites (MMC) (aligned SiC/A1, left

bracket 0//2/ plus or minus 45 right bracket //s SiC/AI, aligned SiC/Ti//3AI,

aligned SiC/Ti-6AI-4V, and aligned A1//20//3/NiAI). The samples' cross-

sectional dimensions are approximately 1.5 by 1.5 mm or smaller, and the

variation of X-ray absorptivity is measured within each (5.6- mu m)**3
volume element of the volume studied. An experimental approach for

nondestructively quantifying damage evolution with XTM is outlined, and

preliminary results are presented for the aligned-fiber SiC/AI MMC. Also
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discussed are the prospects for improved spatial resolution with XTM and for
examining specimens under applied loads and/or with dimensions larger than
the current 2 or 3 mm. 18 Refs.

(24) Jeng, S. M.; Yang, J. -M.; Aksoy, S., Damage mechanisms of SCS-6/Ti-

6AI.4V composites under thermal-mechanical fatigue., Materials

Science & Engineering A: Structural Materials: Properties, Microstructure and

Processing v A156 n 2 Aug 15 1992 p 117-124.

Abstract: The damage mechanisms of the unidirectional SCS-6/Ti-6AI-4V

composites under thermal-mechanical fatigue loading and high temperature

isothermal fatigue were studied. The maximum cyclic temperature varied

from 370 to 650 degree C and maximum applied stresses ranged from 828 to
1180 MPa. The resulting thermal-mechanical fatigue life for each condition

was plotted against the maximum stress in the matrix. The crack initiation
and propagation mechanisms were identified. It was found that matrix

cracking with unbroken fiber bridging is the major damage mode for the

composites under thermal-mechanical fatigue and isothermal fatigue loading.

Furthermore, oxidation-assisted matrix cracking and oxidation pitting on the

fiber surface are the major damage mechanisms for high temperature

oxidizing environments. 9 Refs.

(25) Grady, Joseph E.; Lerch, Bradley A., Effect of heat treatment on

stiffness and damping of Sic/Ti-l$-3, SAMPE Quarterly v 23 n 2 Jan

1992 p 11-16

Abstract: The effect of heat treatment on material properties of Sic/Ti-15-3

was measured by vibration tests. Heat treatment changes the microstructure,
which stiffens the matrix and reduces its damping capacity. Test results

illustrate how the changes in matrix material affect the stiffness and damping

properties of the composite. Damping was found to be more sensitive than
stiffness to microstruetural changes in the matrix. Effects of heat treatment

temperature and exposure time are presented.12 Refs.

(26) Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K., High-temperature

discontinuously reinforced aluminum, JOM v 43 n 8 Aug 1991 p 29-31

Abstract: High-temperature discontinuously reinforced aluminum (HTDRA)

composites have been developed for elevated-temperature applications by

incorporating SiC particulate reinforcement into a rapidly solidified, high-

temperature AI-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior
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elevated-temperature strength, stability and corrosion resistance of the 8009

matrix with the excellent specific stiffness and abrasion resistance of the

discontinuous SiC particulate reinforcement. On a specific stiffness basis,
HTDRA is competitive with Ti-6AI-4V and 17-4 PH stainless steel to

temperatures approaching 480 degree C. Potential aerospace applications

being considered for HTDRA include aircraft wing skins, missile bodies, and

miscellaneous engine, spacecraft and hypersonic vehicle components. 37 Refs.

1
(27) Hunt, Margaret, Aerospace composites, Materials Engineering
(Cleveland) v 108 n 6 Jun 1991 p 27-30

Abstract: Though considered impossible just a few years ago, entire families

of lightweight composites are either available now or hovering on the brink of

commercialization. For example, a high-temperature creep-resistant titanium

alloy has been developed as matrix material for the National Aerospace Plant

by Timer for McDonnell Douglas. Titanium alloy Ti-6AI-4V, reinforced with

continuous silicon carbide filaments, is hot isostatically pressed by Textron for
turbine engine shafts. A powder metallurgy titanium composite from Alloy

Technology features titanium carbide particles for long wear and improved
hardness in moving parts. A new beryllium composite for avionics from Brush

Wellman has density of only 2.2 g/cm**3, as well as excellent thermal

properties. Aluminum-lithium structural composites from BP are lightweight

yet stiff enough for aircraft module doors, with other applications imminent.
Magnesium composites for structural and thermal applications from Martin
Marietta, Lanxide, Cordec, ACMC, Dow, and other manufacturers are fabricated

by powder metallurgy, casting, layup, and in situ techniques.

(28) Wei, W., Effect of long term thermal exposure on the interface

chemistry and mechanical properties of metal matrix composites,

Werkstoffe und Korrosion v 41 n 12 Dec 1990 p 751-752

Abstract: The reinforcement of high temperature metals with lightweight

ceramic fibers provides the designer and t_lanufacturer of high temperature

components materials with increased strengtl_ and stiffness, and a significant
reduction in weight. A recently published study on the SiC continuous fiber

reinforced Ti-6AI-4V system has shown that long term exposure of the MMC

to operating conditions leads to oxidation ot the interfaces and a subsequent

reduction in low cycle fatigue life. 6 Refs.

(29) Johnson, W. S.; Lubowinski, S. J.; Highsmith, Alton L., Mechanical
characterization of unnotched SCS//e,/Ti-15-3 metal matrix
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composites at room temperature, ASTM Special Technical Publication v
STP n 1080

Abstract: Ti-15V-3Cr-3A1-3Sn is a new metastable beta strip alloy used
where cold formability and high strength are desired. Ti-15-3 metal matrix

composites containing silicon-carbide (SCS//6) fibers in five different lay-ups

have been tested at room temperature to determine static strengths and
mechanical properties. Experimental data and predicted values of the

laminate properties and strengths showed good correlation. The off-axis

laminate plies (that is 90 degree and 45 degree) suffered fiber/matrix

interface failures at stress levels as low as 20 ksi, thus significantly affecting
the mechanical properties. Microscopic examinations determined that the

fiber/matrix failures were occurring in the titanium/silicon reaction layer.
Fatigue tests were performed on unnotched specimens to determine the

number of cycles to failure versus cyclic stress level. The stress in the 0

degree fiber could be used to correlate the fatigue life of different laminates
containing 0 degree plies. 12 Refs.

(30) Loretto, M. H.; Konitzer, D. G., Effect of matrix reinforcement

reaction on fracture in Ti-6AI-4V-base composites, Metallurgical
Transactions A (Physical Metallurgy and Materials Science) v 21a n 6 Jun
1990. p 1579-1587

Abstract: Samples of Ti-6A1-4V containing 10 vol pet of either TiC or SiC

have been tested in tension at temperatures up to 760 degree C, and the
mechanical properties have been compared with those of the unreinforced

matrix alloy. The yield and tensile strength of the TiC-containing composite
are superior to those of the SiC composite at room temperature, but that this

behavior is reversed at the higher temperatures. The ductility of the TiC

composite is about 2 pct at room temperature and increases with increase of

temperature. No ductility is found for the SiC composite at room temperature,
but some ductility is observed at higher temperatures. These observations are

interpreted in terms of the extent and nature of the reaction zones between

the matrix alloy and the reinforcement and in terms of the failure

mechanisms observed using scanning (SEM) and transmission electron
microscopy (TEM). 20 Refs.

(31) Jones, C.; Kiely, C. J.; Wang, S. S., Effect of temperature on the
chemistry and morphology of the interphase in an SCS6/Ti.6AI.4V

metal matrix composite., Journal of Materials Research v 5 n 7 Jul 1990 p
1435-1442
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Abstract: The changes in the chemistry and morphology within the

interphase region of an SCS6/Ti-6AI-4V metal matrix composite upon

exposing the samples to varying heat treatments have been studied using

Auger electron spectroscopy, TEM and convergent beam diffraction

techniques. These changes, such as the formation of small TiC panicles at one

interface and the narrowing of a protective pyrocarbon layer at another,

induce fracture to occur at different places within the interphase upon

heating. The reasons for this are explained. Evidence for a change in phase of

a Ti//xSil/y(C) layer to the more thermodynamically stable Ti//SSi//3 is also

given. 7 Refs.

(32) Fukumoto, S.; Hirose, A.; Kobayashi, K.F., Diffusion bonding of SiC/Ti-

6AI-4V composite to Ti-6AI-4V alloy and fracture behaviour of

joint, Materials Science and Technology, vol.9, no.6, p.520-7

Abstract: Continuous SiC fibre reinforced Ti-6AI-4V composites were

diffusion bonded to Ti-6AI-4V alloy. Bondability and the fracture mechanism

of the joint were investigated. The joint strength increased with bonding time,

and was a maximum at 850 MN m/sup -2/ for V/sub f/= 30% composite and
650 MN m/sup -2/ for V/sub f/- 45% composite. The bonding was completed

sooner for V/sub f/- 30% composite than for V/sub f/=45% composite. In

V/sub f/= 30% composite, the maximum joint strength was about 85% of the

tensile strength of Ti-6AI-4V. The void ratio at the interface between matrix

and Ti-6AI-4V alloy decreased as bonding time increased. The joint strength

was controlled by the bonding between the composite matrix and the Ti-6AI-
4V alloy. The maximum joint strength was 100-150 MN m/sup -2/ higher

than the strength simply calculated from the area fraction of the bonded
matrix/Ti-6AI-4V interface. Fibres were debonded from the matrix and the

defects were produced around fibres, so the state of stress at the bond
interface is triaxial owing to the defects and/or restraint of fibres. This may

be the reason for the higher measured strength. 9 Refs

(33) Fukumoto, S.; Hirose, A.; Kobayashi, K.F.,Application of laser beam

welding to joining of continuous fibre reinforced composite to

metal, Materials Science and Technology, vol.9, no.3, p.264-71

Abstract: Laser beam welding was applied to the joining of SiC fibre

reinforced Ti-6AI-4V composite to Ti-6AI-4V alloy. The weldability obtained
for a wide bead (900 mum width) is superior to that for a narrow bead (400

mu m width), the maximum joint strength of 991 MN m/sup -2/ being

obtained at the optimum laser beam position for the wide bead. When the

beam position was closer to the composite than the optimum range, the SiC
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fibres were damaged and segregation of carbon and silicon occurred near the

damaged fibres. This caused a deterioration of joint strength. When the laser

beam position was further from the composite than the optimum range, the

joint strength was reduced by incomplete welding and/or formation of grain

boundaries between the composite matrix and the Ti-6AI-4V plate. Heat

treatment at 1173 K for 3.6 ks improved the joints that were welded using

unfavourable laser beam positions. Therefore, heat treatment extended the

range of suitable beam positions, thereby facilitating control of the laser
beam. 9 Refs.

(34) Briggs, G.A.D.; Lawrence, C.W.; Scruby, C.B., Acoustic microscopy of

ceramic-fibre composites, Journal of Microscopy vo1.169, pt.2, p.139-53

Abstract: A variety of ceramic-fibre composites has been studied by acoustic

microscopy at 1.9 GHz with a resolution of 0.8 mu m. The material studied

were Nicalon-reinforced borosilicate glass, SiC fibres in a magnesium-

aluminosilicate matrix and a calcium-aluminosilicate matrix, and SiC

monofilaments in a Ti-6AI-4V matrix. In all the specimens the contrast was

dominated by strong excitation of Rayleigh waves in the surface. This gave

strong contrast from different phases, and revealed interfaces and cracks by

characteristic crack patterns. Quantitative agreement between observed and
calculated fringe patterns was found, and values of shear and Young's

modulus were measured. In the SiC monofilament specimens, various stages

of progressive deterioration as a result of thermal ageing treatments were
observed. 13 Refs

(35) Choy, K.L.; Derby, B., The compatibility of TiB/sub 2/ protective

coatings with SiC fibre and Ti-6AI.4V, Journal of Microscopy, vo1.169,

pt.2, p.289-95

Abstract: TiB/sub 2 /coatings have been studied as prospective protective

layers to inhibit the interfacial reaction between SiC fibres and Ti-alloy

matrices. This protective coating has been deposited onto SiC monofilament

fibres using a chemical vapour deposition (CVD) technique. The fibre-matrix

compatibility of these TiB/sub 2/-coated SiC fibres in Ti-6AI-4V composites
was evaluated by incorporating the coated fibres into Ti-6AI-4V using a

diffusion bonding technique. The interfaces of this composite were

characterised by scanning electron microscopy (SEM), transmission electron

microscopy (TEM) and electron probe microanalysis, to evaluate the

interfacial microstructures, chemical stability and the efficiency of TiB/sub 2/

as a protective coating for SiC fibres in Ti-alloy matrices, and to study the

effects of deposition temperature on the interface of the coated fibre. Results
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show that stoichiometric TiB/sub 2/ coatings are stable chemically to both SiC
fibres and Ti-6AI-4V and hinder the deleterious fibre-matrix reactions

effectively. Boron-rich TiB/sub 2/coatings should be avoided, as they lead to
the formation of a needle-like TiB phase at the fibre-matrix interface. These

findings provide promising evidence for the value of further exploration of
the use of stoichiometric TiB/sub 2/ as a protective coating for SiC fibre in Ti-

based composites. 15 Refs

!
(36) .Guo, Z.X.; Derby, B.; Cantor, B., Comparison of interfaces in Ti
composites reinforced with uncoated and TiB/sub 2//C-coated SiC

fibres, Journal of Microscopy, vo1.169, pt.2, p.279-87

Abstract: Interfaces play an important role in determining the mechanical

properties of composite materials. The interfaces established between a

titanium-alloy matrix (Ti-6AI-4V) and uncoated and TiB/sub 2//C-coated SiC
fibres are analysed by scanning electron microscopy, transmission electron

microscopy and X-ray techniques. Emphasis is placed upon the interracial

morphology and microstructure, identification of reaction products, and the

stability of the coating layer. Complex multi-reaction layers are observed

frequently in the interfacial zones. Previous, often contradictory, reports

about the interlayers are reviewed. Experimental observation demonstrates

that the type and distribution of interlayers vary in a given system, due to

prolonged treatment of the samples at lemperature. The formation and
distribution of the interlayers are discussed _further, with respect to these and

previous findings. Methods of reducing interfacial reactivity are discussed. 16
Refs

!

(37) Guo, Z.X.; Derby, B., Microstructural characterization in diffusion-
bonded SiC/Ti-6AI-4V composites, Journal of Microscopy, vo1.169, pt.2,

p.269-77, Feb. 1993

Abstract: The microstructural evolution during the diffusion bonding

consolidation of a Ti-6AI-4V/SiC fibre composite was investigated by optical,

scanning and transmission electron micros_:opy. The effects of processing

parameters, particularly temperature, on the microstructures of the matrix
and the fibre and their bonding were considered. Processing at too high a

temperature can result in growth of SiC crystals in the fibre in addition to

rapid interracial reaction, while interfacial bonding cannot be established if

the temperature is too low. Various defects can be caused by inadequate

fabrication practices. These include micro-pores, matrix-cracking, cracking,

bending and impingement of fibres, and heterogeneous fibre distribution.

Methods for avoiding these are discussed. A defect-free and uniformly
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distributed fibre composite can only be achieved by optimizing the processing

parameters (such as temperature, pressure, time and cooling rate) and

adequately combining fibre spacing and matrix thickness with accurate fibre

alignment, l0 Refs

(38) Zhao, Y.Y.; Grant, P.S.; Cantor, B., The microstructure of spray-

formed Ti-6AI-4V/SiC/sub f/metal-matrix composites, Journal of

Microscopy, vo1.169, pt.2, p.263-7, Feb. 1993

Abstract: Spray-forming is a possible manufacturing route for the

fabrication of Ti alloy fibre-reinforced metal-matrix composites (MMCs)

because high rates of alloy-droplet cooling on impact with the fibres prevent
excessive fibre-matrix reaction. Ti-6AI-4V matrix MMC monotapes containing

TiB/sub 2/-coated SiC fibres have been manufactured by electric-arc spray-

forming, and the key MMC microstructural characteristics in the as-sprayed
monotapes have been investigated by optical and scanning electron

microscopy. Fibre infiltration increases with decreasing spraying distance,

decreasing atomizing gas pressure and increasing arc current, because of

higher temperatures in the Ti alloy spray droplets on impact with the fibres.
Too much binder in the fibre preform leads to poor fibre-matrix contact,

while removing the binder leads to the fibres becoming misaligned during

spraying. I0 Refs.

(39) Ibbotson, A.R.; Beevers, C.J.; Bowen, P., Composites, vol.24, no.3, p.241-7,

1993

Abstract: The fatigue response of a continuous silicon carbide (SCS-6) fibre-

reinforced Ti-6AI-4V metal-matrix composite in the presence of a sharp

precrack has been studied in single-edge notched test-pieces in bending.

Crack growth rates have been measured for different values of span-to-width

ratio (s/W) at ambient temperature and at a test temperature of 550 degrees

C in air by the use of a direct current potential difference technique. It was
found that in most cases the observed crack growth rates initially decreased

with increasing crack length (and hence increasing nominal applied stress

intensity range). Effects of frequency on fatigue crack growth rates at 550

degrees C in air have also been identified. In general, crack growth rates are
increased at 550 degrees C only at low frequencies, relative to the crack

growth rates measured at ambient temperature. Based on observations to
date it has been shown that fatigue cracks grown at a large span-to-width

ratio propagate to failure more rapidly than cracks grown at small span-to-
width ratios for equivalent initial nominal stress intensity ranges.

Metallographic sections through the composite indicate that the improved
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fatigue life observed at low values of s/W ratio may be attributable to

debonding at the fibre/matrix interface, which is deduced to delay the onset
of fibre failure. (21 Refs)

!

(40) Barney, C.; Beevers, C.J.; Bowen, P., Fatigue crack propagation

continuous fibre-reinforced ,Ti-6AI-4V alloy metal-matrix

composites, Composites, vol.24, no.3, p.229-34, 1993

in SiC

Abstract: Fatigue crack growth from a through-thickness cut notch has been

studied at ambient temperature in a Ti-6AI-4V alloy matrix reinforced with

Sigma (SIC) fibres. All tests have been carried out in three-point bending, and
localized dominant cracks have been produced in all cases. In these

composites such dominant cracks often grow off-axis, and marked effects of

stress ratio on crack growth rates have been measured. At low stress ratio,

the composites exhibit outstanding crack growth resistance. It has been

possible to observe fatigue striations within the matrix alloy and these

observations allow local crack growth rates (and hence local effective stress
intensity ranges) to be determined. The implications of such studies for defect

tolerance and usable stress ranges for these composites have been considered.

(17 Refs)

I

(41) Watson, M.C.; Clyne, T.W., Reaction-induced changes in interfacial

and macroscopic mechanical properties of SiC monofilament-

reinforced titanium,

Abstract: Results are presented from single fibre push-out testing, simple

tension and impact three-point bending of SiC/Ti composites based on Ti-6AI-

4V alloy reinforced with W-cored monofilaments having duplex CffiB/sub 2/
coatings. Specimens were tested after various heat treatments and it is shown

that a progressive increase in the interracial shear stress for frictional sliding
is observed as reaction proceeds. This increase in the resistance to frictional

sliding can be correlated with a decrease in the thickness of the graphitic
layer. Testing of composites subjected to the same heat treatments also

revealed progressive reduction in tensile strength with increased reaction

layer thickness. Monitoring of Poisson's ratios during testing was used to

confirm that matrix plasticity occurred duTing axial loading, but inelastic
behaviour was due to interracial damage under transverse load. Consistent

with this, impact energies were found to be higher under axial loading.
Although some fibre pull-out was observed for axially loaded specimens

without thick reaction layers, it is suggested that neither this nor any other

interracial process was contributing significantly to the work associated with

impact loadings. (32 Refs)
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(42) Yang, K.; Guo, Z.X.; Edmonds, D.V., Processing of titanium matrix

composites with hydrogen as a temporary alloying element, Scripta

Metallurgica et Materialia, vol.27, no.12, p., 1695-700,1992

Abstract: The fabrication temperature for Ti-ll00 and Ti-6AI-4V matrices

composites can evidently be lowered by the addition of hydrogen as a

temporary alloying element to the matrices before fabrication, owing to the

beta-stabilizing effect of hydrogen which enhances the hot-deformability of

the matrices. Through this processing method the thickness of the interfacial

reaction layer for the Ti-ll00 matrix composite has been significantly
reduced and the bonding of fibre/matrix for the Ti-6AI-4V improved.

Additionally, the matrix microstructure for the Ti-6AI-4V composite was also
found to be refined. It is expected that the fabrication temperature might be

further lowered if the fabrication conditions are optimized further. (10 Refs)

(43) Davidson, D.L., The micromechanics of fatigue crack growth at

degrees C in Ti-6AI-4V reinforced with SCS-6 fibers, Metallurgical

Transactions A (Physical Metallurgy and Materials Science), vol.23A, no.3,

p.865-79,March 1992

25

Abstract: Micromechanics parameters for fatigue cracks growing

perpendicular to fibers were measured for the center-notched specimen

geometry. Fiber displacements, measured through small port holes in the

matrix made by electropolishing, were used to determine fiber stresses,

which raged from I.I to 4 GPa. Crack opening displacements at maximum load

and residual crack opening displacements at minimum load were measured.

Matrix was removed along the crack flanks after completion of the tests to

reveal the extent and nature of the fiber damage. Analyses were made of

these parameters, and it was found possible to link the extent of fiber

debonding to residual COD and the shear stress for fiber sliding to COD.
Measured experimental parameters were used to compute crack growth rates

using a well-known fracture mechanics model for fiber bridging tailored to

these experiments. (25 Refs)

(44) Morel, D.E., Reaction kinetics in continuous silicon carbide

reinforced titaniumlSV-3Cr-3AI-3Sn, Journal of Materials Engineering,

vol.13, no.4, p.251-5, Dec. 1991

Abstract: The reaction kinetics of a silicon carbide (SCS-6) reinforced

titanium 15V-3Cr-3AI-3Sn composite have been characterized using a
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combination of phase contrast optical microscopy and scanning electron

microscopy. The matrix is an all beta alloy that is a potential substitute for

the more commonly used Ti-6AI-4V because it can be cold rolled into thin

foils without expensive intermediate anneals. The composite panel was
fabricated via diffusion bonding and was composed of eight plies (0 degrees

)/sub 8/. Samples were annealed under vacuum at temperatures ranging

from 600 degrees C to 950 degrees C for periods of 4 to 96 hr. For a given

temperature, the zone thickness was observed to increase linearly as a

function of the square root of time. The data fit an Arrhenius type

relationship where the slope of the In k versus 1/T curve represents the

activation energy for the process. Values for the activation energy, Q, are
| presented and compared for the 15-3 alloy, 6AI-4V, and other titanium

matrix alloys. (13 Refs)

I

(45)..Watson, M.C.; Clyne, T.W., The use of single fibre pushout testing

to explore interracial mechanics in SiC monofilament-reinforced Ti
II. Application of the test to composite material, Acta Metallurgica et

Materialia, vol.40, no.l, p.141-8, 1992

Abstract: For pt.I see ibid., vol.40, no.l, p131-9 (1992). Single fibre pushout

testing has been used to measure the load needed to displace a fibre, as a

function of its aspect ratio. This has been done for SiC monofilaments, having

duplex carbon/TiB/sub 2/ coatings, embedded in a matrix of Ti-6AI-4V.

Wedge-specimens have been used, allowing pushout of fibres with a range of

aspect ratios from a single specimen. Partially pushed-out fibres have also

been pushed back into the matrix. Specimens have been examined in the as-

fabricated form and also after subsequent heat treatments. Analysis of the
results indicates that in all cases it was the lesistance to the onset of frictional

sliding which was determining the pushout load. Values of the interfacial

shear stress necessary for frictional sliding, tau /sub 0/ have been

established, although it was not possible to measure separately the coefficient
of static friction or the residual radial compressive stress. (21 Refs)

(46) Choy, K.-L.; Derby, B., The CVD of TiB/sub 2/ protective coating on
SiC monofilament fibres, Journal de Physique IV (Colloque), vol.1, no.C2,

p.697-703, Sept. 1991

Abstract: TiB/sub 2/ protective coatings have been deposited on SiC

monofilament by a CVD technique. The CVD coating process studied involved

the formation of TiB/sub 2/ on resistively heated SiC fibres from the chemical
reaction of TiCl/sub 4/, BCl/sub 3/, H/sub 2/ at reduced pressure in a cold

wall reactor. The effects of temperature, pressure and input reactant gas
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ratio on the morphology and nature of the coatings were investigated. The

efficiency of chemically vapour deposited TiB/sub 2/ as protective coating to
inhibit the fibre-matrix interaction in titanium metal matrix composites was

also evaluated by incorporating coated fibres in Ti-6A1-4V using diffusion

bonding. (6 Refs)

(47) Lancin, M., Title: Relationship between the microstructure of th
interface and the mechanical behaviour of composites materials,

Journal de Physique III (Applied Physics, Materials Science, Fluids, Plasma

and Instrumentation), vol.1, no.6, p.1141-66, June 1991

Abstract: The mechanical behaviour of glass, ceramic or metal matrix

composites reinforced by long fibers depend on any parameters. The most

important are the fiber strength and the resistance to debonding and/or to
sliding at the interfaces. The aim of the tailoring of the interfaces, whose

principle is briefly described, is to control these parameters. To predict its

efficiency is till uncertain. Coupled microstructural and mechanical
characterizations of the composites, but also of their constituents, have to be

performed to reach a better understanding of the mechanical behaviour of
these complex materials. The efficiency of such an approach is demonstrated

by the studies of the SiC Nicalon fiber/LAS glass matrix and the SCS-6

fiber/Ti-6AI-4V matrix composites described. From the comparison of these

studies to those previously performed in glass or ceramic glass matrix

composites, it is possible to discuss the interest of a key point in the tailoring
of the interfaces: the introduction of a carbon interphase by fiber-matrix

reaction or by fiber coating before the process. (40 Refs)

(48) Leucht, R., Dudek, H.J.; Ziegler, G., Laboratory scale processing of

SiC.Ti6AI4V composites, Proceedings of the Institution of Mechanical

Engineers Fourth International Conference. FRC '90 Fibre Reinforced

Composites, 27-29 March 1990, Liverpool, UK, p. 279-82

Abstract: Using continuous SiC fibres for the reinforcement of the Ti6AI4V

alloy and applying different processing routes, laboratory-scale processing of
the composites is discussed. Plate samples with one or a few layers of fibres

have been processed using hot pressing, cylindrical samples have been
obtained using hot isostatic pressing. Fibre volume fractions of about 20 to

40% have been achieved resulting in an essential improvement of mechanical

properties. Problems arising during processing, such as fracturing of fibres,

fibre alignment and envelopment as well as the microstructure of the fibre-
matrix interface are indicated. Examples of processing parts of different

shapes are given. (11 Refs)
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(49) Ferraris, M ; Badini, C ; Marine, F ; Marchetd, F ; Girardi, S, Interfacial

Reactions in a Ti- 6Ai- 4V Based Composite: Role of the TiB sub 2

Coating, Journal of Materials Science 28, (7), 1983-1987, 1 Apr. 1993

Abstract: The characterization of TiB sub 2 /C-coated SiC fibres and their

interface region in a Ti-6AI-4V based composite has been performed by using

scanning electron microscopy (SEM), energy-dispersion X-rays (EDX) and

Auger electron spectroscopy (AES). The features of the as-received fibre and

the reactivity between fibre and matrix occurring during preparation of the
composite have been studied. The interaction of the TiB sub 2 external coating

of the fibre with both the adjacent carbon layer and the titanium-based

matrix is already appreciable in the as-received composite: TiB needles grow
from TiB sub 2 towards the matrix and a new layer containing C, Ti and boron

appears between TiB sub 2 and C. The thicknesses of the original C and TiB

sub 2 fibre coatings decrease in the composite from 1000-400 and 800 nm,

respectively. The TiB sub 2 inhibits the reaction between SiC and Ti: there is
no evidence of Si sub x Ti sub y brittle pha_es. Graphs; Photomicrographs. 24
ref.

Y

(50) Fukuhara, M ; Sanpei, A, Elastic Moduli and Internal Friction of

Low Carbon and Stainless Steels as a Function of Temperature, ISIJ

International 33, (4), 508-512 1993

Abstract: Elastic (Young, shear and bulk moduli, Poisson's ratio and Lame

parameter), longitudinal and transverse internal friction values for low
carbon steel (S10C) and stainless steel (304) were simultaneously measured

over a temperature range 300-1500K, by an ultrasonic pulse sing-around
method. These elastic moduli decrease and Poisson's ratio increases with

increasing temperature, suggesting activation of shear mode in a high

temperature region. Longitudinal and transverse internal frictions are

sensitive to recrystallization, and to alpha (ferritic)/ gamma (austenitic) phase
transition and solution of precipitated carbide phases into the austenitic

matrix, respectively. A relaxation peak with an apparent activation energy of

0.97 eV was observed at approx 610K for the C steel. Comparisons are made

to alumina, TZP, beta -sialon, SiC, Inconel 71[_, and Ti-6A1-4V. Graphs. 32 ref.

(51) Zhao, Y Y ; Grant, P S ; Cantor, B, The Microstructure

Formed Ti-6AI-4V/SiC sub f Metal-Matrix Composites,

Microscopy 169, (2), 263-267 Feb. 1993

of Spray-
Journal of
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Abstract : Spray-forming is a possible manufacturing route for the

fabrication of titanium alloy fibre-reinforced metal-matrix composites

(MMCs) because high rates of alloy-droplet cooling on impact with the fibres

prevent excessive fibrer-matrix reaction. Ti-6AI-4V matrix MMC monotapes

containing TiB sub 2 -coated SiC fibres have been manufactured by electric-

arc spray-forming, and the key MMC microstructural characteristics in the as-

sprayed monotapes have been investigated by optical and scanning electron

microscopy. Fibre infiltration increases with decreasing spraying distance,

decreasing atomizing gas pressure and increasing arc current, because of

higher temperatures in the Ti alloy spray droplets on impact with the fibres.
Too much binder in the fibre preform leads to poor fibrer-matrix contact,

while removing the binder leads to the fibres becoming misaligned during

spraying. Photomicrographs; Graphs; Diffraction patterns. 10 ref.

(52) Warrier, S G ; Lin, R Y, Using Rapid Infrared Forming to Control
Interfaces in Titanium.Matrix Composites., JOM 45, (3), 24-27 Mar.

1993

Abstract: Control of the fiber-matrix reaction during composite fabrication is

commonly achieved by shortening the processing time, coating the
reinforcement with relatively inert materials, or adding alloying elements to
retard the reaction. To minimize the processing time, a rapid infrared forming

(RIF) technique for metal-matrix composite fabrication has been developed.

Experiments have shown that the RIF technique is a quick, simple, and low-

cost process to fabricate titanium-alloy (Ti80, Ti85, Ti- 6AI- 4V, Ti- 15V- 3Cr-
3A1- 3Sn, Ti- 24A1- l lNb, Ti- 15Mo- 2.7Nb- 3AI- 0.2Si) matrix composites
reinforced with either silicon carbide or carbon fibers. Due to short processing

times, typically on the order of 1-2 rain in an inert atmosphere for composites

with up to eight-ply reinforcements, the interfacial reaction is limited and

well controlled. Composites fabricated by this technique have mechanical

properties that are either comparable to or, in several cases, superior to those
made with conventional diffusion-bonding techniques. Graphs;

Photomicrographs. 21 ref.

(53) Nicolaou, P D ; Piehler, H R ; Saigal, S, Finite Element Analysis of the
Consolidation Behavior of Composite Materials Using the

Foil/Fiber/Foil Technique, Conference: Concurrent Engineering Approach

to Materials Processing, Chicago, Illinois, USA, 1-5 Nov. 1992, p. 247-260

Abstract: Finite element simulation was used to model the consolidation of

metal matrix composites fabricated by the foil/fiber/foil technique. Material
data were used for Ti- 6Al- 4V matrix and SCS-6 silicon carbide 142 mu m

A-23



|

diameter fibers and the temperature was kept constant at 875 deg C. The

process parameters that were varied to characterize the consolidation
behavior were applied stress level, and fiber spacing. Foil deformation

occurred primarily by time dependent creep processes. Densification maps,
which can be used to select the consolidation parameters, were constructed. A

delay was observed in the densification in the latter stages of pore closure

after the two neighboring foils have established contact with one another.

This delay is attributed to the low stresses acting on the foil in the vicinity of
the void. Fiber spacing is important in determining the time required to reach

full density because higher strains must be imposed on the foils for smaller

fiber spacings than for larger spacings. The simulation results presented are

in very good agreement with experimental results reported earlier in the

literature. Graphs; Photomicrographs. 11 ref.

W

l

(54) Bowen, P ; Ibbotson, A R ; Beevers, C J, Characterisation of Crack
Growth in Continuous Fibre Reinforced Titanium Based Composites

Under Cyclic Loading, Conference: Fatigue of Advanced Materials, Santa
Barbara, California, USA, 13-18 Jan. 1991, p. 379-393

Abstract: Crack growth resistance has been studied under cyclic loading in

continuous fibre (SIC) reinforced titanium alloy (Ti- 6AI- 4V) composites at

ambient temperature. Single dominant cracks are formed, and they dictate

the crack growth resistance of the composite. The mechanism of crack growth

is characterised by initial matrix crack growth alone which results in fibres

bridging the crack surfaces. The incidence of fibre failure then controls both
the local value of da/dN and ultimately the onset of final catastrophic failure.

Inevitably, this results in a crack size dependent crack growth resistance and

toughness. Crack growth rates decrease in general with increased matrix

fatigue crack length, but extreme care is zequired to predict stable/unstable
transitions. Indeed, subtle effects of stress ratio are observed, but fibre

failure appears to depend primarily on the cyclic load range. Graphs;

Photomicrographs. 9 ref.

(55) Cox, B N, Fatigue and Fracture of Brittle Fibrous Composites,

Conference: Fatigue of Advanced Materials, Santa Barbara, California, USA, 13-

18 Jan. 1991, p. 53-65

Abstract: Theoretical aspects of fatigue and fracture in brittle fibrous

composites, referring to prior observations of different failure modes in
several such materials, are reviewed. Materials discussed include composites

with ceramic and intermetallic matrices (Ti-25Al.lONb-3V-1Mo/SCS-6, Ti-

6AI-4V/SCS-6, LAS/SiC, AI sub 20 sub 3 /Cu). The micromeehanical
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(intrinsic) and geometrical (extrinsic) factors that determine the mode of
failure are discussed. Most of these considerations are based on detailed

descriptions of matrix crack growth normal to aligned fibers under both

monotonic and cyclic loading that have been developed over the last five

years. The connection of micromechanical composite properties and

macroscopic fracture and fatigue characteristics is highlighted. Graphs. 27 ref.

(56) Nicolaou, P D ; Piehler, H R ; Saigal, S, Finite Element Simulations of

the Consolidation of Continuous Fiber Reinforced Composites,

Conference: Computer Applications in Shaping & Forming of Materials, Denver,

Colorado, USA, 21-25 Feb. 1993, p. 117-135

Abstract: The foil/fiber/foil process is one of the most common techniques

used to fabricate continuous fiber reinforced composite. In composites

consisting of several layers of foils and fibers, some of the fibers form a

triangular arrangement, while others are arranged in a square pattern. Finite

element analysis using the commercial code ABAQUS has been employed in
order to determine which of these fiber arrangements densify at a lower rate,

and hence, controls the densification process. The simulation results, based on

composites comprised of Ti- 6AI- 4V foils and SCS-6 silicon carbide fibers

showed that the triangular arrangement densifies much faster than the

square. Foils comprising the square order to produce a fully densified

composite. A slowing of the densification was observed in the latter stages of

pore closure after the two neighboring foils have established contact with

each other. This slowing may be attributed to both low stress levels and

strain increases in the pore vicinity. Densification maps showing the change of

density with time for a range of processing temperatures and applied stresses
were also constructed. These maps can be used to select the consolidation

parameters designed to minimize reaction zone formation at the matrix/

reinforcement interface, residual stresses, etc. Graphs; Photomicrographs. 12
ref.

(57) James, N A, Small Coupon Tensile Tests for Ranking

Monofilament.Reinforced Titanium MMC's, Conference: Test Techniques

for Metal Matrix Composites, London, UK, 20 Nov. 1990, p. 40-54

Abstract: BP Metal Composites is developing the technology required for the
production of monofilament-reinforced composites. A range of fabrication

methods are being studied. Development is taking place at the BP Research

Centre, and at the recently-acquired subsidiary, DWA Composite Specialties in

the USA. To assess the quality of MMC's produced by vacuum hot pressing at

the BP Research Centre, a tensile ranking test has been developed. The test
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provides a rapid assessment of the relative quality of small MMC coupons.

The net-shape coupons are fabricated by vacuum-hot pressing in a Nimonic

die. The samples are then tabbed and strain gauges applied to prepare them

for testing. The details of fabrication and preparation are described.

Composites have been produced using uncoated BP Sigma SiC monofilament

and the recently-developed duplex coated BP Sigma monofilament in Ti- 6AI-
4V. The test data from these composites are presented, and the importance of

these data to the development of a successful fabrication process is indicated.

Graphs; Photomicrographs. 3 ref.

1 (58) Bowen, P ; Cotterill, P J ; Ibbotson, A R, Fatigue Crack Growth in
Continuous Fibre Reinforced Metal Matrix Composites, Conference:

Test Techniques for Metal Matrix Composites, London, UK, 20 Nov. 1990, p.
82-97

Abstract: A unique relationship between the crack growth rate per cycle,

da/dN, and the applied alternating stress intensity range, Delta K, does not
exist in continuous fibre reinforced titanium (Ti-15V-3Cr-3AI-3Sn, Ti-6AI-

4V) based metal matrix composites because crack growth resistance depends

critically on fatigue crack length. This is a direct consequence of crack

bridging by intact fibres which causes a marked reduction in the value of

stress intensity range local to the growing crack-tip. Nevertheless, if a single
dominant crack dictates the crack growth resistance of the composite, then it

appears that fracture mechanics parameters may be of use in predicting crack

growth rates. They also have potential for estimating lifetimes provided that
effective crack-tip stress intensities can be modelled accurately. The use of

the direct current potential drop technique is considered in detail. Care must
be taken to ensure that standard calibration curves that relate changes in

potential to changes in crack length are applicable to the small scale

testpieces under study. Most importantly, the technique shows some promise

in detecting individual fibre failures. Graphs. 13 ref.

(59) Roman,.I ; Jero, P D, Interracial Shear Behavior of Two Titanium-
Based SCS-6 Model Composites, Conference: Intermetallic Matrix

Composites II, San Francisco, California, USA, 27-30 Apr. 1992, p. 337-342

Abstract: Single fiber push-out and push-back tests combined with acoustic

response monitoring were used to examine the interfacial behavior in two Ti

alloy-SiC fiber comosites. Distinctly different behaviors were observed in the

two systems. The differences were attributed to the formation of a substantial

interracial reaction layer in one of the composites which changed the

interfacial chemistry and the resulting debond topography. The reaction layer

A-26



caused an increase in the interracial bond strength and in the roughness of

the debonded interface. The latter resulted in substantially increased sliding

friction. Although both composite interfaces exhibited some roughness, only

one showed a seating drop during fiber push-back. This is related to the fact
that the reaction layer which formed in one of the composites was severely

degraded during fiber push-out. Although this interface was still rough, the
roughness correspondence between fiber and matrix was destroyed during

sliding, such that seating was no longer possible. Graphs; Photomicrographs.
20 ref.

(60) Bowen, P ; Ibbotson, A R ; Beevers, C J, Fatigue Crack Growth in

Continuous Fibre Reinforced Titanium Alloy Metal Matrix

Composites, Conference: Mechanical Behaviour of Materials- VI. Vol. 3,

Kyoto, Japan, 29 July-2 Aug. 1991,p. 107-112

Abstract: Crack growth rate/cycle, da/dN, does not have an unique

relationship with the applied alternating stress intensity range, Delta K, in
continuous SiC fibre reinforced Ti based metal matrix composites. This is a

direct consequence of crack bridging by intact fibres which results in crack

size dependent crack growth resistance. In the testpiece geometry considered,

a single dominant crack develops and grows through matrix regions first,

leaving fibres bridging in the crack wake. This results in decreased crack

growth rates as the crack grows. The onset of first fibre failure appears to be
controlled by the applied stress intensity range, but care is needed to define
stable/unstable crack transition. The number of intact fibres bridging the

crack is of paramount importance in determining the onset of catastrophic

failure. Graphs; Photomicrographs. 9 ref.

(61) Iamai, Y ; Shinohara, Y ; Ikeno, S ; Shiota, I, Deterioration Factor of

SiC/Ti Alloy Composite After Heat Treatment, ISIJ International 32,

(8), Aug. 1992, p. 917-922

Abstract: Reaction is caused at the interface between fiber and metal-matrix

in a composite at an elevated temperature. The reaction greatly affects the

strength of the composite. SiC-fiber reinforced Ti-alloy composites were

fabricated by diffusion bonding. The reaction products were examined after

heat-treatment of the composites. Effect of the reaction products on the

strength of the composites was studied. SiC fiber was used as the
reinforcement material. Titanium, Ti- 6AI- 4V or Ti- 8Mo/Ti- 6AI- 4V was

used as the matrix. The heat-treatment was carried out at a temperature of

1073 or 1123K for 32.4-360 ks. The strengths of heat-treated composites

were measured at room temperature. In the case of Ti matrix, the strength of
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composites decreased to 60% with increasing temperature and time of the

heat-treatment. The decreasing of the strength of composites was little in the

cases of the alloy matrices except at 1123K for 360ks. The reaction products

were TiC and Ti sub 5 Si sub 3 in every mamx studied. TiC was formed on the
surface of the SiC fiber and Ti sub 5 Si sub 3 was formed outward of TiC. From

these results, the alloying elements were effective to decrease the reaction at

the interface. The abrupt decrease of the strength of the composites was due

to increasing of defects between SiC and the reaction products. A small pit
was often observed at the periphery of the fiber in fracture surface. The

morphology of the fracture surface showed the pit was the initiation of the

crack propagation. This means the deterioration of the fiber depends not on

the thickness of the reaction zone but on the pit, especially in the case of

serious degradation. Then the deterioration of the fiber was often rather

serious even though the thickness of the reaction zone was small. Graphs;

Photomicrographs. 7 ref.

(62) Jeng, S M ; Yang, J -M ; Rosenthal, D G ; Aksoy, S, Mechanical
Behaviour of SiC Fibre-Reinforced Titanium/Titanium Aiuminide

Hybrid Composites, Journal of Materials Science 27, (19), 5357-5364, Oct.
1992

Abstract: The viability of developing an SiC fibre-reinforced Tiltitanium

aluminide hybrid matrix composite was explored. The hybrid composites are

expected to be used at temperatures beyond those attainable in conventional

Ti matrix composites while improving the damage tolerance of the titanium

aluminide matrix composites. The room-temperature mechanical

characteristics studied were tensile strength, fracture toughness, low-cycle

fatigue life and fatigue crack growth rate. The mechanisms of damage

initiation and propagation under variou:_ loading conditions were also

characterized. The directions for developing a satisfactory composite with

hybrid Ti/titanium aluminide (Ti- 6AI- 4V, 1"i- 25A1- 10Nb- 3V- 1Mo) matrix

are also addressed. Photomicrographs; Graphs. 12 ref.

(63) Jeng, S M ; Alassoeur, P ; Yang, J -M, Fracture Mechanisms of Fiber-

Reinforced Titanium Alloy Matrix Composites, Materials Science and

Engineering A A154, (1), 11-19, June 1992

Abstract: The fatigue crack propagation behavior of several SCS-6 fiber-
reinforced Ti alloy matrix composites (Ti- 6AI- 4V, Ti-15-3, Ti-25-10) at

room temperature was studied. The testing was conducted in a tension-
tension mode on specimens with a chevron notch perpendicular to the fiber

direction. The maximum applied stress intensity ranged from 25-50 MPa m
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exp 1/2 . The fatigue crack growth rates at different applied stress intensity
levels were measured. The fatigue damage mechanisms at each testing

condition were also identified. Several damage mechanisms were observed at

the crack tip including matrix cracking, fiber bridging, crack splitting and

crack deflection. The loading conditions, fiber/matrix interfacial shear

strength and matrix cracking stress under cyclic loading were the major

microstructural parameters controlling the fatigue crack growth behavior. A

modified frictional slip model was also used to predict the fatigue crack

propagation behavior and correlated with experimental results. Graphs;

Photomicrographs. 18 ref.

(64) Ibbotson, A R ; Beevers, C J ; Bowen, P, Fatigue Crack Growth in

Fibre Reinforced Metal Matrix Composites., Conference: Euromat 91.

Vol. II. Advanced Structural Materials, Cambridge, UK, 22-24 July 1991 p.
469-478

Abstract: Studies are presented in which composite systems (Ti-15.3/SiC and

Ti- 6AI- 4V/SiC) displayed good crack growth resistance even though

dominant cracks are produced. In particular, fatigue crack growth rates do

not increase significantly with increased nominal applied stress intensity

range, and in many instances decreases in crack growth rates are observed
with fatigue crack length increase. This is explained by a reduction in

effective stress intensity range by fibre bridging in the crack wake, and

stable/unstable crack growth transitions are considered. Similar behaviour is

seen in general at elevated temperature (550 dog C) although crack growth

rates are higher; and crack growth occurs off-axis, consistent with a decrease

in the effective fibre-matrix interface strength. Graphs; Photomicrographs. 17
ref.

(65) Bowen, P ; Cardona, D C ; Ibbotson, A R, Micromodeiling of Crack

Growth in Fibre Reinforced Composites, Conference: Second

International ASM Conference on High Temperature Aluminides and

Intermetallics. II, San Diego, California, Sept. 16-19,1991, p. 628-634

Abstract: Rudimentary modelling based on point-loading (weight function)
methods has been used to assess the crack growth resistance of fibre

reinforced composite materials (Ti- 6AI- 4V matrix, SiC fibers). Many trends

in observed crack growth resistance behaviour in the presence of crack

bridging can be predicted qualitatively. For the case of single dominant cracks

the application of fracture mechanics parameters to characterize crack growth

appears to be justified. Graphs; Photomicrographs. 8 ref
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(66) .Jeng, S, Fracture Mechanisms of the SCS-6 Fiber.Reinforced
Tltantum Alloy Matrix Composites, University of California (Los Angeles),

Dissertation, p 198 June 1992

Abstract: The mechanical properties and failure mechanisms of several SCS-

6/Ti alloy matrix composites have been studied. Tensile, notched three-point

bending, low cycle fatigue and fatigue crack propagation tests were conducted

at room temperature on the unidirectional SiC fiber-reinforced Ti-15V-3Cr-

3Al- 3Sn, Ti-6AI-4V and Ti-25Al-10Nb-3V -IMo composites. Microstructural

parameters controlling the deformation, damage initiation and growth of the

composites were investigated using metallographic technique and

fractographic analysis. These parameters include inteffacial reaction between
fiber and matrix, interfacial mechanical properties, matrix toughness, fiber

strength and loading conditions. The resulting deformation and fracture
mechanisms of these composites under quasi-static and notched three-point

bend loading were classified on the basis of the ratio of the fiber strength (

sigma sub f ): interracial shear strength ( tau sub i ) vs. matrix toughness.
These failure mechanisms provide a scientific basis for the development of an

analytical model to predict the micro- and macro-fracture processes of fiber-
reinforced metal matrix composites. Furthermore, the low cycle fatigue

damage diagram was constructed using the maximum stress in the fiber vs.

fatigue life. Depending on the stress levels applied, the fatigue damage of the

composites can be classified into three regions: fiber breakage dominated;
interfacial cracking, matrix cracking and fiber breakage dominated

(progressive); and matrix cracking dominated. Matrix cracking with bridging
fibers in the wake of the crack tip was the major mechanism for the fatigue

crack propagation behavior of the composites. The transition from the

noncatastrophic to catastrophic mode I failure was controlled by the fiber

breakage in the wake of crack. A micromeehanical model was also proposed

to predict the fatigue crack propagation behavior of the composites. These

results can be used as guidelines for the selection of processing parameters,

fiber coating, and matrix modification to develop high-performance metal

matrix composites.

(67) Bakarinova, V I, Interphase Interaction in Composite Materials
Based on Titanium, Conference: MICC 90: Moscow International Composites

Conference 1990, Moscow, USSR, 14-16 Nov. 1990, p. 445-453

Abstract: A characteristic feature of the fibrous composite materials (FCM) is

that their ceramic fibers and matrix are mutually active, the resultant

reaction being responsible, in most cases, for the formation of chemical

compounds. The boundary conditions can be improved by selecting a matrix

alloy and strengthener which are less likely to interact with one another, and
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by applying barrier coats to the fibers. The nature and rate of the

physicochemical interaction at the fiber-matrix boundary were estimated by

analyzing the results of comparing the thickness values of the zones formed

in various temperature and time conditions of annealing the FCM produced by

means of diffusion welding. The investigation of the FCM reinforced by

ceramic fibers showed that the rate of forming the interaction zones when

using the matrixes made of high alloys was lower than that in the case of

pure Ti. The thermal stability of the silicon carbide fibers proved to be

greater than that of the boron fibers in several Ti alloys. The study of the
effects of the silicon carbide, boron carbide and boron nitride barrier coats of

the B fibers has revealed a difference in the nature and degree of efficiency

of the coats on the interphase surface while confirming that much could be

expected as a result of further study. Graphs; Photomicrographs. 3 ref.

(68) Kahveci, A I ; Cook, C R ; Auhl, J R ; Meyer, T N, Processing and
Properties of SiC Fiber Reinforced Aluminum and Titanium Alloy

Composites, Conference: Thermal Spray Coatings: Properties, Processes and

Applications, Pittsburgh, Pennsylvania, USA, 4-10 May 1991, p. 357-362

Abstract: A summary of research on the processing of SiC fiber reinforced

metal matrix composites is presented. Composites were fabricated by thermal

spraying of Al and Ti alloys. As-sprayed and consolidated composites were

evaluated by optical and SEM techniques. Fiber damage during thermal
deposition and the effect of various coatings on fiber damage were studied.

Mechanical properties of some consolidated composites were determined at

room temperature. The matrix materials are conventional high temperature

2319 Al alloys, very high temperature AI- Fe- Ce alloys (CZ42-[AI- 7Fe- 6Ce]
and CU78-[AI- 8.3Fe- 4Ce]), Ti- 6Al- 4V, and Ti- 14AI- 21Nb alloys.

Photomicrographs; Graphs. 18 ref.

(69) Wei, W, Interfacial Properties of a SiC Fibre-Reinforce_

Titanium Alloy After Long.Term High-Temperature Exposurq

Journal of Materials Science 27, (7), Apr.1992, p.1801-1810

Abstract: The effect of long-term high-temperature exposure on the

interfacial properties of a typical SiC continuous fibre-reinforced Ti alloy was
investigated. Specimens were annealed in air and in vacuum under simulated

operating conditions using temperatures up to 500 deg C for times up to 700

h. The interfacial chemistry and fracture morphology of the specimens were

determined using Auger and scanning electron microscopy. It was shown

that high-temperature long-term exposure to air resulted in embrittlement of

the fibre/matrix interface through combined oxidation and attack of the Ti
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matrix on the fibres and fibre coating. Exposure to operating temperatures in

vacuum did not lead to a significant degradation of the interfaces. The

degradation of the interfaces in high temperature service can lead to a
reduction of the service life of components made of reactive system metal-

matrix composites such as SiC-reinforced Ti alloys (e.g. Ti- 6AI- 4V). Spectra;

Photomicrographs; Graphs. 15 ref.

k1

(70) Saigal, A ; Kupperman, D S ; Majumdar, S, Residual Strains in

Titanium Matrix High.Temperature Composites, Materials Science and

Engineering A A150, (1), 20 Feb. 1992, p. 59-65.

Abstract: Residual thermal strains and stresses that developed during

cooling of a silicon-carbide-fiber-reinforced Ti matrix high-temperature

composite were determined by an experimental neutron diffraction

technique. The results were compared with those obtained by finite element

analysis. The study was conducted over the temperature range 20-950 deg C.

As a result of thermal expansion mismatch, compressive residual strains and

stresses were generated in the fibers during cool-down. The axial residual
strains and stresses were highly tensile in the matrix, and the matrix

underwent plastic deformation. Average transverse residual strains in the

matrix were compressive. The measured data compare fairly well with finite

element method predictions. The effects of fabrication procedures and

thermal processing, such as liquid nitrogen dipping and thermal cycling, on

the residual strains were also studied. Graphs. 14 ref.

1

(71) Masuda, C ; Tanaka, Y ; Shiota, I ; Imai, Y ; Furubayashi, E ; Usami, K ;

Hirano, T ; Iwasaki, H, Nondestructive Evaluation of Fibers or Defects

in Metal Matrix Composites by X-Ra) _ Computed Tomography Using

Synchrotron Radiation, Conference: Structural Composites: Design and

Processing Technologies, Publ: ASM International, Materials Park, Ohio
44073-0002, USA, 1990, p. 179-186

Abstract: Boron or silicon carbide fiber reinforced AI or AI alloys (6061)

matrix composites and silicon carbide reinforced Ti alloy (Ti- 6AI- 4V) matrix

composite were used for the observation of inner fibers contained in the

composites by X-ray computed tomography (CT) using synchrotron radiation

in the photon factory in National Laboratory for High Energy Physics (KEK) in

Japan. The energies were selected to 21 and 29 keV for A1 alloy and Ti matrix
composites on the basis of the X-ray absorption coefficients of the included

elements in composites, respectively. The inner fibers and debonding part of
the interface between fiber and matrix were clearly observed for composites

used. In the case of the silicon carbide reinforced Al composites, the core
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carbon fibers of 30 mu m in diameter were also observed. It is considered

that the resolution of X-ray CT scanner used was approx I0 mum. The three-

dimensional images were reconstructed from several CT images. It is pointed

out that the three-dimensional images visually displayed inner structures and

it is very useful to discuss the model of the fracture process of the fiber

contained in the metal matrix composites. Graphs; Photomicrographs. 9 ref.

(72) Davidson, D L, The Micromechanics of Fatigue Crack Growth at 2:

deg C in Ti- 6AI- 4V Reinforced With SCS-6 Fibers, Southwest

Research Institute (US), Metallurgical Transactions A 23A, (3), Mar. 1992 , p.
865-879.

Abstract: Micromechanics parameters for fatigue cracks growing

perpendicular to fibers were measured for the center-notched specimen

geometry. Fiber displacements, measured through small port holes in the

matrix made by electropolishing, were used to determine fiber stresses,

which ranged from 1.1-4 Gpa. Crack opening displacements at maximum load

and residual crack opening displacements at minimum load were measured.
Matrix was removed along the crack flanks after completion of the tests to

reveal the extent and nature of the fiber damage. Analyses were made of

these parameters, and it was found possible to link the extent of fiber

debonding to residual COD and the shear stress for fiber sliding to COD.

Measured experimental parameters were used to compute crack growth rates
using a well-known fracture mechanics model for fiber bridging tailored to

these experiments. Graphs; Photomicrographs. 25 ref.

(73) Bashyam, M, Ultrasonic NDE for Ceramic- and Metal.Matrix

Composite Material Characterization, General Electric Aircraft Engines,

Conference: Review of Progress in Quantitative Nondestructive Evaluation.

Vol. 10B, La Jolla, California, USA, 15-20 July 1990, p. 1423-1430

Abstract: A theoretical model to calculate elastic properties and ultrasonic

velocities for a variety of materials was developed. This model has proven

suitable for parametric studies to examine effect of varying fiber volume

fractions and porosity, among other things. The materials used in

experiments (Ti- 6AI- 4V/silicon carbide, calcium aluminum silicate/silicon

carbide, and calcium aluminum silicate/nicalon) seem to be mildly anisotropic

in contrast with graphite- epoxy composites. The low attenuation properties

of the metal matrix composite (MMC) and ceramic matrix composite (CMC)

materials make it practical to measure sound velocities. It was also noted that

the velocity transverse to the fibers is a useful indicator of the fiber volume

fraction. The measurement of frequency-dependent attenuation has proven
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to be very useful to classify defects. A practical method to acquire and

process signals was used and results indicate that this method has the

potential to distinguish between porosity and planar type defects. For large

scale operations, it would be necessary to optimize this inspection procedure.

One rewarding approach could be the use of real-time DSP filtering

techniques to extract two or three frequencie_ of interest instead of analyzing

the entire waveform and spectrum. Polar backscatter technique was used to
analyze fiber orientation and other fiber related defects. The backscatter

technique has contributed to improving the sensitivity of porosity detection

for the MMC and CMC materials. It was demonstrated that low frequency

SAW has the potential to detect sub-surface defects, porosity, and material
| inhomogeneity. Photomicrographs; Graphs. 7 ref.

(74) Murthy, P L N ; Chamis, C C, Computational Simulation of High

Temperature Metal Matrix Composite Behavior., NASA Lewis Research

Center NASA. Technical Memorandum Pp 18 1991. Report No.: NASA TM-
104377.

Abstract: Computational procedures are described to simulate the thermal

and mechanical behavior of high temperature metal matrix composite (HT-
MMC) in the following four broad areas: (1) behavior of HT-MMC from

micromechanics to laminate; (2) HT-MMC structural response for simple and

complex structural components; (3) HT-MMC microfracture; and (4) tailoring

of HT-MMC behavior for optimum specific performance. Representative

results from each area are presented to illustrate the effectiveness of the

computational simulation procedures. Relevant reports are referenced for

extended discussion regarding the specific area. (SiC/Ti-6-4 is used as an

example). Graphs. 15 ref.

!
(75) Paley, M ; Aboudi, J, Inelastic Thermal Buckling of Metal Matrix

Laminated Plates, Tel-Aviv University, Jc_urnal of Thermal Stresses 14, (4),

Oct.-Dec. 1991, p.479-497

Abstract: A method is proposed for determining the critical temperature

changes that cause inelastic thermal bifurcation buckling of metal matrix

composite plates (SiC/Ti- 6AI- 4V). The inelastic behavior of the metallic

matrix is described by an elastic- viscoplastic temperature-dependent
constitutive law; the fibers are allowed to be either elastic or elastic-

viscoplastic material. The approach is based on the applied thermal load and

the history-dependent instantaneous effective thermomechanical properties

of metal matrix composites, which are established by a micromechanical

analysis. The method is illustrated by the prediction of the inelastic thermal
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buckling of SiC/Ti metal matrix angle-ply laminated plates by employing the
classical and first-order shear deformable laminated plate theories. Graphs.

15 ref.

(76) Jeng, S M ; Alassoeur, P ; Yang, J -M ; Aksoy, S, Fracture Mechanisms
of Fiber.Reinforced Titanium Alloy Matrix Composites.IV. Low

Cycle Fatigue, University of California (Los Angeles), Materials Science and

Engineering A A148, (1), 30 Nov. 1991, p. 67-77

Abstract: The low cycle fatigue behavior and mechanisms of fatigue damage

initiation and propagation of several SCS-6 fiber-reinforced Ti alloy

composites (Ti- 6A1- 4V, Ti- 15V- 3Cr- 3AI- 3Sn, Ti- 25A1- 1ONb- 3V- 1Mo)

at room temperature were investigated. The fatigue damage diagram was

constructed using the maximum stress in the fiber vs. fatigue life. Depending

on the stress levels applied, the fatigue damage of the composites can be

classified into three regions; (1) fiber breakage dominated; (2) interfacial

cracking, matrix cracking, and fiber breakage dominated (progressive); and
(3) matrix cracking dominated. The microstructural parameters which affect

the low cycle fatigue behavior of these composites are also discussed. Graphs;

Photomicrographs. 16 ref.

(77) Stock, S R ; Breunig, T M ; Guvenilir, A ; Kinney, J H ; Nichols, M C,

Damage in Metal Matrix Composites and Crack Face Interactions

During In Situ Loading of AI- Li Alloy 2090 Studied by X-Ray

Tomographic Microscopy, Georgia Institute of Technology, Conference:

1991 Industrial Computed Tomography II Topical Conference, San Diego,

California, USA, 20-24 May 1991, p. 158-162.

Abstract: Results of quantitative damage accumulation studies in a

continuous, aligned-fiber SiC/AI metal matrix composite and observations of

internal crack geometry in samples of A1- Li alloy 2090 are summarized for

synchrotron and laboratory XTM. A small, portable load frame for in situ
XTM is described and is used to observe fatigue crack face interactions as a

function of applied load in the AI- Li alloy. Data for SiC/Ti- 6AI- 4V

composites illustrate what can be accomplished with wiggler radiation at

energies as low as 30 keV. Future applications of XTM to mechanical

properties studies are suggested, and the corresponding experimental

requirements are discussed. Photomicrographs.

(78) Ko, W L ; Jackson, R H, Combined-Load Buckling

Metal-Matrix Composite Sandwich Panels Under
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Environments. (Report), NASA Dryden Fl:ight Research Center, NASA.

Technical Memorandum Pp 28 1991, Report No.: NASA TM-4321.

Abstract: Combined compressive and shear buckling analysis was conducted

on flat rectangular sandwich panels with the consideration of transverse

shear effects of the core. The sandwich panel is fabricatd with Ti honeycomb

core (e.g. Ti- 6AI- 4V) and laminated metal-matrix composite (e.g. Ti- 15V-

3Cr- 3A1/SiC sub F ) face sheets. The results show that the square panel has

the highest combined-load buckling strength, and that the buckling strength

decreases sharply with the increases of both temperature and panel aspect

ratio. The effect of layup (fiber orientation) on the buckling strength of the
-_ panels was investigated in detail. The metal-matrix composite sandwich

panel was much more efficient than the sandwich panel with nonreinforced

face sheets and had the same specific weight. Graphs. 8 ref.

(79) Gigerenzer, H ; Kumnick, A J, Low Pressure Induction Plasma

Spraying of Titanium Metal Matrix Composites SCS-6/Ti6AI- 4V

and SCS-6/Ti6AI. 2Sn- 4Zr- 2Mo, Textron Specialty Materials,

Conference: Plasma Pr_essing and Synthesis of Materials. III, San Francisco,
California, USA, 17-19 Apr. 1990, p. 29-37.

Abstract: Two Ti metal matrix composites (MMCs) have been successfully

fabricated from low pressure induction plasma sprayed monotape and their
mechanical behavior has been characterized. Powders of Ti6AI- 4V (Ti6-4)

and Ti6AI- 2Sn- 4Zr- 2Mo (Ti6-2-4-2) were used as matrix sources and the

reinforcement was Textron Specialty Materials (TSM) SCS-6 silicon carbide

fiber. The importance of process control to minimize interstitial (O, nitrogen,

hydrogen, and carbon) contamination effects is discussed. Oxygen m pick-ups

were reduced to typicaly < 200 ppm and tetal interstitial pick-up levels were
in the range of 200-500 ppm. Uniaxially reinforced composite panels of four-

ply construction were fabricated from these monotape materials by the HIP
process and tension tests in the fiber direction were performed. Tensile

strengths and elastic moduli averaged 1565 MPa (227 ksi) and 182 GPa (26.4
MSI) for the SCS-6/Ti6-4; and 1531 MPa (222 ksi) and 184 GPa (26.'/ MSI)

for the SCS-6/Ti6-2-4-2 for composite fiber volume fractions of 0.27-0.28

and 0.29-0.30, respectively. The results compared favorably with other

fabrication approaches for these composite systems and with rule-of-mixture

(ROM) predictions. It was concluded that SCS-6/Ti composites fabricated

from plasma sprayed monotapes exhibit properties consistent with state-of-

the-an MMC fabrication technology. Graphs, Photomicrographs. 6 ref.
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(80) Jeng, S M ; Yang, J -M ; Yang, C J, Fracture Mechanisms of Fiber-

Reinforced Titanium Alloy Matrix Composites.Ill. Toughening

Behavior, University of California (Los Angeles), Materials Science and

Engineering A A138, (2), 15 June 1991, p. 181-190

Abstract: The damage mechanisms of several notched unidirectional SCS-6
fiber-reinforced Ti alloy (Ti- 6AI- 4V, Ti- 15V- 3AI- 3Cr- 3Sn, Ti sub 3 AI)

matrix composites tested under three-point bending are evaluated. The key
microstructure parameters which dominate the load- deflection curve, crack

tip initiation, crack tip damage growth and fracture behavior of these

composites are discussed. The role of the fiber/matrix interface in crack

initiation and propagation is also examined. Results indicate that the crack
initiation energy is affected by the fiber strength, matrix yield strength or

shear strength. The crack propagation energy is controlled by matrix phase

deformation, multiple fiber fracture and fiber pull-out. Graphs,

Photomicrographs. 9 ref.

(81) Yang, J -M ; Jeng, S M ; Yang, C J, Fracture Mechanisms of Fiber-

Reinforced Titanium Alloy Matrix Composites.l. Interfacial
Behavior, University of California (Los Angeles), Materials Science and

Engineering A A138, (2), 15 June 1991, p. 155-167

Abstract: Interracial shear strength and frictional stress of SiC, boron, AI sub

20 sub 3 fiber-reinforced Ti alloy (Ti- 6Al- 4V, Ti- 15V- 3Al- 3Cr- 3Sn, Ti

sub 3 Al) matrix composites were determined using indentation and
fragmentation tests. The influences of fiber surface chemistry, matrix alloy

comopsition, microstructure and prolonged thermal exposure on the
interfacial properties were invstigated. The interface failure resulting from

indentation loading was characterized using scanning electron microscopy.

Also, the influence of interfacial reaction on the strength of the fiber was

determined. Results indicate that the mechanical properties and failure

characteristics of the interfacial region depend on fiber surface chemistry,

matrix microstructure, and residual stresses at the interface. Graphs,

Photomicrographs. 25 ref.

(82) Cornie, J A ; Argon, A S ; Gupta, V, Designing Interfaces in Inorganic

Matrix Composites, MRS Bulletin 16, (4), Apr. 1991, p. 32-38.

Abstract: The conditions for engineering interfaces between P-55 (10 mum

diameter graphite fiber) and an AI matrix to provide mechanical fusion

through a controlled delamination process are analysed for maximum

cohesive strength. An interfacial crack-bridging axial-toughening mechanism
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is maintained for interface delamination of composites. The methods of

micromechanical measurement of interface strength and modifications of

interfaces through reinforcement surface treatment are outlined. The results

on other systems are presented which include interface synthesis in PACVD

amorphous SiC-coated P-55 fibers in an Al matrix, SCS-6 CVD SiC
monofilament in Ti- 6Al- 4V and Si sub 3 N sub 4 matrices. Graphs,

Photomicrographs. 17 ref.
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(83) Hunt, M, Epic Proportions in Metal-Matrix Composites, Materials

Engineering (Cleveland) 108, (3), Mar. 1991, 24-27.

Abstract: Metal macrocomposites are engineered materials consisting of

large-scale combinations of metals with other materials. Macrocomposites

include metal sheets bonded t o cores of resin, ceramic, metal, honeycomb or
foam; cast metals with large-scale reinforcements; components with two or
more different monolithic metals bonded to each other; and combinations of

monolithic materials and reinforced metals. These macrocomposites improve

strength and stiffness of metals while reducing weight and keeping costs

lower than conventional metal-matrix composites. A review of

macrocomposites covers composite HIP, honeycomb, honeycomb for CATs,

resin cores, acoustic materials, sound damping steel, and a cast composite
brake drum. Materials mentioned are Ti- 15AI- 3V, Ti- 6AI- 4V, Inconel 718;

A15052, 6061, 2024, 7075, and 7475.

(84) McMeeking, R M ; Evans, A G, Matrix Fatigue Cracking in Fiber

Composites, University of California (Santa Barbara), Mechanics of Materials

9, (3), 19 Nov. 1990, p. 217-227.

Abstract: A model is developed for fatigue growth of matrix cracks in

metals (e.g. Ti- 6AI- 4V) reinforced with aligned continuous elastic fibers (e.g.

SIC). The mechanics of elastic cracks bridged by frictionally constrained fibers

is used to develop the model, which provides estimates of the tip value of the

stress intensity factor amplitude, Delta K sub TIP. It is found that, when the

applied load amplitude is held fixed during fatigue crack growth, Delta K sub
TIP , and thus the rate of growth approach an asymptotic value independent

of crack length. The residual strength after fatigue crack growth is also
discussed. In some cases, the residual strength is unaffected by prior fatigue

growth. But, in another regime, the matrix crack length allows fibers to begin

breaking before the matrix crack grows. The strength is then inversely

proportional to the square root of fatigue crack length. Graphs. 19 ref.- AA
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(85) Molliex, L ; Favre, J P ; Vassel, A, Micromechanical Approach of

Tensile Properties in Titanium-Based Composites, ONERA, Conference:

Titanium 1990: Products and Applications. Vol. 1, Lake Buena Vista, Florida,

USA, 30 Sept.-3 Oct. 1990, p. 180-188.

Abstract: The fragmentation test, where a single Si fiber (SCS-6) embedded

in a tensile specimen of Ti-6-4 matrix breaks into short fragments, was

applied to determine quantitatively the ability of the interface to transfer
stresses between fiber and matrix up to 900 deg C. The interface parameter
was then introduced into a model of stochastic fracture of the SCS-6/Ti-6-4

unidirectional composite. The evolution of the tensile strength as a function of

temperature was predicted and agrees very well with the experimental

tensile test data. Graphs, Photomicrographs. 12 ref.

(86) Bain, K R ; Gambone, M L, Fatigue Crack Growth of SCS-6/Ti-64

Metal Matrix Composite.Materials Behavior Research, General Motors,

Conference: Fundamental Relationships Between Microstructures and

Mechanical Properties of Metal Matrix Composites, Indianapolis, Indiana, USA,

1-5 Oct. 1989, p. 459-469.

Abstract: The longitudinal fatigue crack growth behavior (growth across the

fibers) of continuous reinforced SCS-6/Ti-64 composite was tested at 600 deg

F (316 deg C) Several specimen designs were evaluated, and a procedure for

precracking the specimens was developed The fatigue crack growth was
measured in a range of stress intensity from 20-60 ksi root in. and a range of

crack growth rate from 10 exp - 9 in./cycle to 3 x 10 exp - 7 in/cycle The

effect of frequency was examined between cycling at 20 Hz down to 0.2

cycles/min Reducing the frequency did not increase the rate of crack

growth between 20 Hz and 20 cpm However, the crack growth rate did

increase when the cycle frequency was decreased to 0.2 cycles/rain This

may be due to the effect of the environment on either the matrix or the fiber
matrix interface The cracks were found to grow normal to the load and

across the fibers at low stress intensities but vertical crack growth was found

in all specimen geometries at high initial cyclic stress intensities.

Fractography of the failed specimens indicated that the matrix and the fibers
did not fail on the same plane. Crack growth is planar through the matrix. The

fibers are "pulled out" of the matrix and fracture out of the plane of the

matrix. Graphs, Photomicrographs. 2 ref.

(87) Sensmeier, M D , Wright, P K, The Effect of Fiber Bridging on

Fatigue Crack Growth in Titanium Matrix Composites, GE Aircraft

Engines, Conference: Fundamental Relationships Between Microstructures and
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Mechanical Properties of Metal Matrix Composites, Indianapolis, Indiana, 1-5
Oct. 1989, p. 441-457.

Abstract: The model analysis and experimental results show that fiber

bridging of fatigue cracks can occur in Ti matrix composites (Ti- 6AI- 4V/SiC)

under conditions of practical interest. This fiber bridging can have a profound
effect on the fatigue crack growth rates measured for the matrix cracks. The

extent of fiber bridging is found to depend on fiber/matrix interfacial shear

strength, applied stress, and fiber strength. For optimum crack growth

resistance in the composite system, the right balance of interfacial strength
and fiber bridging must be obtained. If the interface is too strong, the degree

of fiber bridging is lessened and the crack grows fairly quickly. However, if
the interface is too weak, there is much more bridging yet less closure force is

achieved. If the correct interface stress range is achieved, a successful balance
between the bridging zone size and bridging closure force will be obtained.

For the composite system studied, it was found that decreasing the applied
stress range increases the interface stress range over which substantial

increases in crack growth life can be obtained. Also, increasing the strength of
the fiber should result in a similar increase in this range. Graphs,
Photomicrographs. 2 ref.

(88) Bakuckas, J. G. ; Johnson, W. S., Application of Fiber Bridging
Models to Fatigue Crack Growth in Unidirectional Titanium Matrix

Composites, National Aeronautics and Space Administration, Hampton, VA.
Langley Research Center. Corp., Report No.: NAS 1.15:107588; NASA-TM-
107588, Jul 92, p. 54.

Abstract: Several fiber bridging models were reviewed and applied to study
the matrix fatigue crack growth behavior i_ center notched (0)(sub 8) SCS-

6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6AI-4V laminates. Observations revealed
that fatigue damage consisted primarily of matrix cracks and fiber matrix

interracial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix

interface failure included fracture of the brittle reaction zone and cracking
between the two carbon rich fiber coatings. Intact fibers in the wake of the

matrix cracks reduce the stress intensity factor range. Thus, an applied stress

intensity factor range is inappropriate to characterize matrix crack growth
behavior. Fiber bridging models were useci to determine the matrix stress

intensity factor range in titanium metal matrix composites. In these models,

the fibers in the wake of the crack are idealized as a closure pressure. An

unknown constant frictional shear stress is assumed to act along the debond
or slip length of the bridging fibers. The frictional shear stress was used as a

curve fitting parameter to available data ((.'rack growth data, crack opening
displacement data, and debond length data). Large variations in the frictional
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shear stress required to fit the experimental data indicate that the fiber

bridging models in their present form lack predictive capabilities. However,

these models provide an efficient and relatively simple engineering method

for conducting parametric studies of the matrix growth behavior based on

constituent properties.

(89) Lamathe, G.; Kagawa, Y. (Tokyo Univ., Japan); OKURA, A. (Inst. of Space,
Sagamihara, Japan) Influence of the reaction zone on the interfacial

shear stress in SiC/titanium alloy composite, and Astronautical

Science, In: Advanced composite materials II (A93-32976 12-24). Paris,

SIRPE and Les Techniques de rlngenieur, 1991, p. 266-268.

Abstract: An investigation is conducted of the influence of the reaction-zone
thickness on the shear properties of SiC fiber-reinforced Ti-6AI-4V is

presently conducted by means of the shear-lag model for determination of

interracial shear debonding stress and frictional sliding shear stress during

indentation tests. Three concentric-cylinder models are used to study the
behavior of the complex interface between fiber and matrix.

(90) UPADHYA, KAMLESHWAR, ED., Developments in ceramic and

metal-matrix composites; Proceedings of the Symposium, TMS Annual

Meeting, San Diego, CA, Mar. 1-5, 1992, p. 397

Abstract: The present volume on aerospace applications of advanced

composites discusses test environment and temperature changes on the
tensile behavior of SiC/SiC, the foil-fiber-foil hot-pressing fabrication of fiber-

reinforced Ti6AI4V, the fabrication of NB3AI in situ composite

microstructures, fiber/matrix interface reactions in SiC-reinforced Ti alloys,

and X-ray computed tomography for advanced materials and processes. Also

discussed are the damping behavior characterization of graphite particulate-

reinforced AI composites, the numerical modeling of residual stresses in

graded ceramic/metal materials, the growth rate of thermally-induced

microcracks in metal-matrix composites, laminated metal composites,

Fe/sapphire interfaces, and the flow behavior of constrained ductile phases.

(91) ONZAWA, TADAO; SUZUMURA, AKIO; KIM, JONG H., Influence of

reaction zone thickness on tensile strength for titanium-matrix

composites reinforced with SiC fiber IN: Composites; Proceedings of

the 8th International Conference on Composite Materials (ICCM/8), Honolulu,

HI, July 15-19, 1991. Section 12.-21, p. 19-J-I to 19-J-10.

Abstract: The effect of the reaction-zone thickness on the tensile strength of

SiC-fiber-reinforced composites with various Ti-containing matrices including
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a commercially pure Ti (CPTi), Ti-6AI-4V, and Ti-21V-4AI, was investigated.

The major reaction products in the fiber-matrix interface were TiC and Ti5Si3.

Results of SEM and TEM observations showed that the growth rate of the

reaction zone in the composite with Ti-21V--4AI matrix was lower than in

composites with CPTi and Ti-6AI-4V matrices. The tensile strength of

composites decreased with increasing reaction-zone thickness, but only after

the reaction zone thickness reached the value of I micron. (I.S.).

(92) JAMES, N. A.; LOVETT, D. J.; WARWICK, C. M., Mechanical behaviour

of a continuous fibre reinforced titanium matrix composite,
] Proceedings of the 8th International Conference on Composite Materials

(ICCM/8), Honolulu, HI, July 15-19, 1991. Section 12-21, p. 19-I-I to 19-I-I0.

Abstract: C/TiB2-coated SiC monofilament has been consolidated in a Ti-

6AI-4V matrix. The composite shows strength greater than 1700 MPa and a

stiffness of 210 GPa. Exposure to 865 C in vacuum leads to little strength loss

after 3.25 hours. The strength of the composite after longer exposure at this

temperature also has been studied and related to fracture behavior.

(93) NAKAJO, Y., WANG, S. S. (Illinois, University, Urbana), High-

temperature fatigue crack growth of SCS6/Ti-6AI-4V metai-matri_

composite, Proceedings of the 5th Japan-U.S. Conference on Composite

Materials, Tokyo, Japan, June 24-27, 1990, p. 329-336.

Abstract: Fatigue crack growth experiments were conducted on double edge

notch specimen of SCS6fri-6AI-4V unidirectional metal-matrix composite

both at room temperature and at 316 C alc_ng with experiments for monotonic

fracture toughness. The results clearly depict the high-temperature effects on

basic material service and design. For transverse fatigue crack growth,

commonly used DeltaJ-da/dN data reduction is successfully conducted, but for

] longitudinal fatigue crack growth, the same DeltaJ-da/dN data reduction is

found to be invalid because it cannot account for perpendicular cracking, fiber

debonding, or developing plastic zone which are undertaking during the

longitudinal fatigue crack growth.

(94) GAMBONE, M. L., Fatigue and fracture of titanium aluminides,

volume 2 Final Report, 1 Jul. 1985 - 31 Jul. 1989, Detroit Diesel Allison,

Indianapolis, IN., Publication Date: Feb. 1990 235P., Report No.: AD-A227353;
ALLISON-EDR-14249-VOL-2; WRDC-TR-89-4145-VOL-2, Contract No.:

F33615-85-C-5111; AF PROJ. 2420
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Abstract: Titanium aluminide composites hold great promise for application

in the later stages of advanced compressor systems. This conclusion is based

on the assumption that Ti3Al composites can achieve the fatigue strength

levels projected from data for the SiC/Ti 6AI-4V composite system yet remain

stable to 650 C or higher temperatures. In the limited results to date, Ti3Al

composite specimens have exhibited a minimum of fiber/matrix interaction,

good strength stiffness, and significantly better fatigue strength than

monolithic Ti3Al. The good fatigue and high stiffness are essential for

application to the high temperature compressor spacers in the minimum-

weight rotor configuration being developed. The key material design
parameters for titanium aluminides and titanium aluminide composites must

be identified and understood. These parameters include the fatigue and
fracture behavior (crack initiation and propagation as a function of

temperature, frequency, size, and stress ratio), the near threshold

stressintensity crack growth rates, and the thermomechanical fatigue
behavior.

(95) Barney, C.; Beevers, C. J.; Bowen, P., Fatigue crack propagation in
silicon carbide continuous fiber-reinforced Ti-6AI-4V alloy metal-

matrix composites; Composites, 1993 v. 24, no. 3, Pp. 229-34.

IDENTIFIERS: silicon carbide titanium composite fatigue, fiber silicon carbide

titanium fatigue DESCRIPTORS: Synthetic fibers,silicon carbide., composites

with titanium alloy, fatigue crack propagation in CAS REGISTRY NUMBERS:

12743-70-3 composites with silicon carbide fibers, fatigue crack propagation

in 409-21-2 properties, composites with titanium alloy matrix, fatigue crack

propagation in, Copyright 1993 by the American Chemical Society

(96) Hemptenmacher, J.; Leucht, R.; Dudek, H. J., Metallographic

characterization of titanium alloy Ti6AI4V used as a metal matrix

in silicon carbide fiber composites; Inst. Werkstofforsch., Dtsch.

Forschungsanst. Luft- und Raumfahrt, Cologne/Porz, Germany, Sonderb. Prakt.

Metallogr, 1992 v. 23, no. Metallographie, p. 245-57

IDENTIFIERS: titanium composite silicon carbide microstructure, silicon

carbide fiber composite microstructure, DESCRIPTORS: Synthetic
fibers,silicon carbide.., composites with titanium-aluminum-vanadium alloy,

microstructure of, CAS REGISTRY NUMBERS: 12743-70-3 composites with

silicon carbide fibers, microstructure of 409-21-2 uses, fibers, composites

with titanium-aluminum-vanadium alloy microstructure of, Copyright 1993

by the American Chemical Society
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Mechanical Properties And Characterization

of SCS-6/Ti-6AL-4V Composite
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[

(1) Title:Mechanical and Fracture Properties of Metal Matrix Composites

Author : S. Bandyapadhyay

The paper presents a very brief overview of the mechanical and fracture

properties of MMCs with emphasis on discontinuously reinforced

aluminium alloys. The composite strength is shown to increases with 30-

40% vf but with further reinforcement, the failure is likely at the onset

of yield due to loss of ductility. The higher vf, the inability of the matrix
to redistribute the stresses results in very high localized fiber stresses.

The yield strength of discontinuously reinforced aluminium alloy is noted

as _-- 450 MPa, Ultimate Tensile Strength _= 600 MPa and elastic modulus

in excess of 120 GPa. The properties for SiC reinforced aluminum Ti-6-4
are shown in Table 1. The stress strain behavior of various AI matrices

with 20% vf of SiC is shown in Fig. 1. The effect of variation in the

Sic/6061 AI composite is presented in Fig. 2_. The paper does not provide

data for continuously reinforced composites.

(2) Title : The Influence of
6AI-4V/SCS-6 Comoosites

the Interface on Mechanical Behavior of Ti-

Author : P. K. Wright, R. Nimmer, G. Smith, M. Sensmier and M. Brun

The paper provides a detailed experimental and FEM treatment of the

nature of fiber/matrix interface for the Ti-6AI-4V/SCS-6 composite. The

main thrust of the paper is to provide evidence supporting hypothesis

that interface bonding is primarily due to thermal residual stresses. In

transverse tensile loading, normal to the fiber direction, the interface

separation occurs much earlier than the co_3posite fracture.

The test coupons were made from Ti-6-4/SCS-6 composite panels
having 26 to 37% vf, purchased from Textron. The fibers were C-rich

coated. The as fabricated structure of the interface is shown in Fig. 3a.

Some of the panels were heat treated and thermally cycled. The heat
treatment was carried out at 900 C (1650 F)in vacuum for 10 hours and

thermal cycling was done 2000 times between 21 C (70 F) and 427 C
(800 F), in air. An increase in the reaction zone of the interface was

observed for the heat treated material (Fig. 3b), whereas the structure of

thermally cycled fiber matrix interface (Fig. 3c) did not show any

degradation.
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The following tests were carried out :

(1) Transverse tension.

(2) Longitudinal tension.

(3) In-plane shear.

(4) Longitudinal fatigue crack growth.

The composite properties for longitudinal and transverse tests at
RT, 316 C (600F) and 427 C (800 F) - for longitudinal tension only are

shown in Table 2. The stress strain response of the composite from

transverse tensile test is plotted in Fig. 4. The knee in the plot is

attributed to separation of fiber/matrix interface which occurs at low
applied loads. The finite element analysis result is also given in Fig. 4

which shows close agreement with the observations. The interface

separation occurs when the residual stresses (45 ksi/310 MPa) are

overcome by the applied load. The composite has weak strength under
transverse tensile loading. The results from the longitudinal tensile tests

are shown in Fig. 5 for the as fabricated, heat treated and thermally

cycled specimens. Any degradation of UTS for the thermally treated

samples is not clearly evident. Also, the interface separation does not
play major role during the longitudinal tensile loading. At post-test

examination, the fiber pullout lengths were measured to be less than
0.01-0.015 inch (0.25-0.40 mm) for all types of tests.

The in-plane shear tests were done using Iosipescu and +45

tension/compression methods. No yielding occurred till buckling for

compressive tests whereas prominent yielding was observed for tensile
tests. The test results are shown in Fig. 6. The interfacial shear

strengths of Ti-64/SCS-6 as found from the fiber indentation tests are

given in Table 3. The tests concluded that interface friction coefficient is
between 0.75 and I. The interface shear strength was observed to be

about half the matrix yield strength, i.e., 66 ksi (450 MPa).

(3) Title : The Relationship between Interracial Reaction and Tensile

Strength of SiC Filament Reinforced Ti Alloy Composites

Author : Yoshio Imai, Yoshikazu Shinohara, Susumu Ikeno and Ichiro

Shiota

The influence of reaction zone of SCS-6 and Ti/'l'i-SMo/'ri-6-4

composites on their tensile strength were analyzed at microscopic level.
The materials were heat treated at 1023 K for 32.4 ks, at 1073 K for 126

ks and at 1123 K for 360 ks. The composites did not show noticeable

degradation except those treated at 1123 K for 360 ks. The reaction
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product growth was minimum for SCS-6/Ti-6-4.

reaction products is calculated as follows •

The thickness 8 of the

where A is reaction rate constant and t is heating time.

parameter A is expressed as

The

A --Ao exp(-Q/kT)

where A0 is constant, Q is activation energy
constant. The value of Ao for Ti-6-4 matrix is

cm2/sec.

and k is Boltzmann

given as 1.24E-05.

Fig. 7 shows reaction zone view of Ti-6-4/SCS-6 composite after
heat treatment and Fig. 8 gives the thickness of the reaction zone versus

square root of the heating time. The growth rate of reaction zone
thickness for SCS-6/Ti-6-4 was minimum among the tested composites.

The relationships between tensile strength and heating time, and effect

of reaction products on composite tensile slrength are shown in Figs. 9

and 10, respectively. All composites, heat treated at 1123 K for 360 ks,

show an abrupt drop of strength with an increase of reaction zone
thickness. For Ti-6-4/SCS-6, the strength was 60% of ROM. As the

constituents individually do not lose their strength to such extent, the

drop in strength is attributed to faults in the reaction zone.

(4) Title-Shear Creep Deformation of SCS6/Ti-6AI-4V Metal Matrix

Composite at Elevated Temperatures

Author • A. Miyase and S. S. Wang

The article provides experimental results of monotonic shear and

shear creep tests for the SCS-6/Ti-6-4 composite at 600 F and room

temperatures. The tests were conducted on 8 layer specimens processed
at 1700 F under 15 ksi for 2 hours. Both 0 and 90 degree specimens

were tested.

The monotonic shear stress strain curves for the composite and

matrix are shown in Fig. 11 for RT and in Fig. 12 for 600 F. For 90

degree, abrupt failure occurs at the onset of plasticity. The predicted

composite shear moduli are 10.0 and 8.7 Msi at room temperature and
600 F, respectively, using Halpin-Tsai equation. These values are

approximately 10% higher than given by the experimental data. The
results at 600 F for shear creep tests of unidirectional SCS-6/Ti-6-4 for
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various stress levels are shown in Fig. 13. The shear creep for both O

and 90 degree specimens is well behaved. Because the fiber creep at this

temperature is negligible, the shear mode is dominated by the
fiber/matrix interface deformation.

The failure modes are also examined under monotonic and shear

creep loading. The 90 degree specimen were loaded at _ = 27 ksi and 0

degree specimen at _ = 40 ksi. The photographic evidence from the tests

is shown in Figs. 14-21. For both monotonic shear and shear creep, the
failure modes are similar. The cause of failures is the debonding of the

interface, primarily between SCS-6 and the matrix. The authors have

also noted that in case of monotonic shear loading for 90 degree

orientation, the failure appears at a single fracture plane, whereas for 0

degree the failure occurs by developing multiple shear bands along the

fiber direction. For 0 degree test, the damaged fibers were aligned in the

thickness direction. For 90 degree test, SiC fiber and SCS6 coating

interphase was also damaged.

(5) Title-Fracture mechani_m_ Qf fiber-reinforced titanium alloy matrix
composites. Part II: Tensile behavior

Author • S. M. Jeng, J.-M., Yang, C. J. Yang

Along with other MMC materials, tensile and fracture tests were

carried out on SCS-6/'I'i-6-4 of 36% vf, unidirectional composite. The

samples were heat treated in vacuum at 800 C for 50 and 100 hrs before

the test. The experiment was conducted at RT. The paper emphasizes

that the MMC behavior is dependent upon mechanical properties of the

constituents, fiber/matrix interface and geometrical conditions. Above

700 C, the chemical reaction at the interface severely degrades the fiber

strength. The stress strain curve for SCS-6/Ti-6-4 composite is shown in

Fig. 22. The tensile properties for as fabricated and thermally exposed

composite are given in Table 4. The pre-test thermal treatment did not

degrade the material properties of SCS-6/Ti-6-4.

The post-test examination revealed a fiat fracture surface, interface

debond, matrix plastic deformation and multiple cracking of the
interracial reaction zone. The interface between carbon layer and

reaction zone, however, was intact. The tensile strength, cracking length

and the reaction zone Weibull modulus values are given in Table 5. Fig.

23 shows the tensile strength of the interfacial region for SCS-6/Ti-6-4

(also for SCS-6/'Ti-15-3) as a function of the reaction zone thickness.
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(6) Title" Ultimate strengths of fiber-reinforced ceramics and metals

Author • W. A. Curtin

A theory for predicting ultimate tensile strength Of fiber reinforced
ceramics is discussed which is then applied, in modified form, to predict

MMC strength. The assumption is that a small pre-existing matrix crack

propagates at the critical stress o_ in a plane perpendicular to the fiber.

The crack does not propagate across the fiber, instead, the fiber matrix

interface debonds and the stress is transferred to the matrix through

shear over a length defined as a function of critical stress and the
] internal shear. Once the matrix cracks are sufficiently closed space, all

applied loads are carried by the fibers alone. The situation is depicted in

Fig. 24. The global load sharing theory allows that the average stress per
unbroken fiber is o'vf. If some fibers are broken in a chosen plane then

other fibers near the plane must carry load T>OVf. It is assumed that no
fibers are broken within a sliding length +If of the chosen plane, as

shown in Fig. 25. The broken fibers within +If carry reduced load of 2zL/r

....1 where L and r are the average distance of broken fibers from the plane

and fiber radius, respectively.

The matrix cracking phenomenon is modified for the case of MMC

materials. It is now assumed that beyond true matrix stress Oy, the

matrix can not carry additional load. The debonding of the fiber/matrix

interface still occurs upon fiber fracture. The modified theory to predict

the ultimate MMC tensile strength is as under :

--2--"I- (_2)] o_ OyOu = fI(m+2)_+l +(l-f)

kI
I"

m = Weibull modulus.

z = sliding resistance (shear).

f = fiber volume fraction.

The mechanical properties of SCS-6 and predicted strength of SCS-

6/Ti-6-4 are shown in Table 6. The Table also lists results predicted by

the Rule of Mixtures (ROM) and Bundle Rule of Mixture theories (BROM).

The predictions are within acceptable agreement of experimental data.

(7) Title" Tensile and Compressive Properties of Metal Matrix Composites

Author • R. J. Arsenault
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The chapter analyzes the elastic characteristics of continuous and
discontinuous MMCs by applying the ROM and other analytical
expressions to predict the material properties. Restricting discussion to
CMMCs (Continuous Metal Matrix Composites) only, the equations
reproduced here are in general applicable to all types of composites.

Considering that the MMC operating environment are likely to be at high

temperatures with significant non-linearities, the information available
in the current article is of limited value.

Using ROM, the longitudinal and transverse modulus of elasticity

for a unidirectional composite are given by :

Eli =EfVf+ Em Vm (longitudinal)

__l__=Vm
Eze F,m F_ (transverse)

The elastic moduli and stress strain relationships for a transversely

isotropic composite (Fig. 26) having 5 independent elastic constants are

listed in Table 7. The elastic longitudinal, transverse and shear modulus
and Poisson ratios are shown in Table 8, defined in micromechanics

modelling approach. The Halpin-Tsai equations are also useful in
approximating the elastic composite behavior. For unidirectionally

loaded fibers, the moduli is given by :

p 1 + _rlVf

Pm ] 4- _Vf

p_pm- 1
TI=

pf/p 

where p and Pm denote the composite and corresponding matrix

moduli The values for empirical constant _ are given in Table 9.

The stress state of an axially loaded unit cell (cylinder-within-

cylinder) is shown in Fig. 27. where the inner cylinder represents a fiber.

The UTS provided by the model for two MMCs, i.e., SiCfri-6-4 and SCS-

6/Ti-6-4) are given in Table 10.

(8) Title : Inlcrfa_is! Prowrtie_ Measurement For SiC Fiber-Reinforced

Titanium Allpy Composites

Author : C. J. Yang, S. M. Jeng, and J.-M., Yang
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The interracial properties for SCS-6/Ti-6-4 and other MMC were

measured by indentation technique usiag Vickers microhardness

indenter. The SCS-6/Ti-6-4 composite was tested as fabricated and also

after annealing at 800 C for 50 and 100 hrs. The samples were ] to 5
times the fiber diameter and load was increased form 0.1 to 3.6 kg in 0.1

kg increments till fiber/matrix sliding was initiated. Then the pushed

out fiber was indented in the reverse direction The test arrangement and

a pushed out fiber are shown in Figs. 28 and 29, respectively. On the

average, 15 tests were carried out from one sample. The shear stress
was calculated from

Zrf= P/2xrt

= P/2_'r (t-a) (corrected)

assuming that frictional and debonding stresses were constant along the

fiber length. In the above equation P is the debonding load, r is the fiber

radius, t is the specimen thickness and a is a correction constant for free

edge effect.

The interracial debond strength and frictional stress for SCS-6/Ti-

6-4 are shown in Table 11. The annealed specimen show some increase
in debond and frictional stresses. The interface between the two carbon

coatings, outer carbon coating, reaction zone and matrix were all

debonded (Fig. 30). It was noticed that the reaction primarily occurred

between C-rich layer and the matrix, therefor, preserving fiber
characteristics.

(9) Title • The Tensioned Pushout Test for

(_haracterization Under Mixed Mode Loading

Fiber-Matrix Interface

Author • M. C. Watson and T. W. Ciyne

A 5 mm2, 2 mm thick specimen was cut form 35% vf laminate with

fibers parallel to the thickness. The specimen was then diffusion bonded

into a large matrix panel to facilitate gripping for transverse loading.
Before diffusion, the specimen edges were chamfered to 45 deg angle. It

was then placed on six alloy foils, each 20 mm2 and 500 tim thick. A

constant stress of 150 MPa was maintained at 850 C for 30 mins. The

diffusion scheme is shown in Fig. 31. The specimen was then cut,

grounded and thinned by careful metallographic polishing to a foil of 110

_tm thickness.
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The test method is illustrated in Fig. 32. To compensate for any

specimen curvature incurred during preparation, handling and loading,

strain gauges were attached both at the top and bottom of the specimen.

These were then adjusted to ensure proper biaxial loading. The in-plane

stress was applied by screw arrangement on half of each pair of grips.

The axial load was applied via indenter till the pushout was achieved.

The total in-plane load includes

stress, which can be obtained using an

was calculated from

the applied load plus the residual

analytical model. The shear stress

where ape is the pushout stress, s is the ratio of fiber depth to

diameter. The approximation to the radial stress was done using the
following equations :

and Or = 1.25o]

In the above, _ is the strain gauge reading, Em and V m are the

matrix Young's modulus and Poisson's ratios, respectively. The

fiber/matrix interface stress is approximated at 25% higher than the far

field in-plane stress a l. The fiber and matrix properties used in

calculations are given in Table 12. The experimental interracial shear
and radial stresses for SiC/Ti-6-4 are plotted in Fig. 33. The data is

considered preliminary but the test technique can be used effectively to

get further data for biaxiai loading.

(10) Title : Mierom¢chi_ni¢ol Modeling of Fiber/Matrix Interface Effects in
Transversely 'Loaded SiC/Ti-6-4 Metal Matrix Comnosites

Author : Ronald P. Nimmer, R. :J. Banker, Edward S. Russell, Gary A. Smith

and Kennard Wright.
Residual Stresses

A detailed 3-D unit cell finite element analysis of SCS-6/Ti-6-4 was

carried out under the assumptions of perfect and weak fiber/matrix
bond. Also, the accumulation of residual stresses was calculated and
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compared with measurements. The composite was fabricated by HIP

process with vf of 0.35. A typical composite microstructure is shown in

Fig. 34 and model geometry is given in Fig. 35. The Ti-6-4 properties

used in the analysis are shown in Table 13. The fiber SCS-6 was

assumed to be isotropic and homogeneous. The time independent, linear

elastic properties supplied by the supplier were as follows:

E = 414 GPa

v=0.3

a = 4.86 x 10_/C

Tref = 900 C

where a is the coefficient of thermal expansion.

The residual stresses in matrix at location M1 (shown in the figure)

as a function of temperature are plotted in Fig. 36. The matrix residual

stresses are maximum at the indicated location, i.e., M1. The plot shows
that the matrix is below but close to yield, using yon Mises criterion. The

y direction fiber and matrix stress contours are shown in Fig. 37. At z =

0 plane, these stresses are equal to the radial stress and in x-z plane, the
y direction stresses are equivalent to the residual hoop stress. The radial

stresses are compressive whereas the circumferential stresses change

sign across the fiber-matrix interface. The large positive hoop stress in
the matrix tends to develop radial direction crack in the matrix. The

effective stress in the matrix is plotted in Fig. 38. The fiber effective

stress (465 to 475 MPa and uniform) is not shown. The maximum tensile

values occur close to the interface along y and z axis and minimum stress

occurs along the unit cell diagonal.

The authors point out effect of significant variations in reported

values of coefficient of thermal expansion. If a large ¢z value is used in

the analysis then matrix may yield between 400 and 500 C during cool

down. It was further shown that When time dependent matrix

properties were used in power law modeli, the prediction of effective

stress fell by 16% and no yielding was indi,:ated (Fig. 39). A cooling rate
of 2300 C/hr was assumed for the above analysis. Using X-ray

diffraction, the average tensile residual stresses were measured as 275-
345 MPa (axial) and 175-200 MPa (transverse). Therefore, the finite

element calculations predicted 21% and 35% higher residual stresses in
the axial and radial directions, respectively. However, predictions by

using time dependent matrix properties are closer to the measurements.
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Fiber/Matrix Interface

Finite Element analysis was conducted using perfect and weak

interface geometrical models for the unit composite cell of 35% vf. The
weak interface assumes 0 transverse tensile strength of the interface and

in compression, the materials can not inter-penetrate. The average
stress strain curves for the two cases are plotted in Fig. 40. The analysis
included the effect of residual stresses and time independent material

properties. The interface coefficient of friction was assumed to be 0.3.

The contours of y direction stress at 175 MPa, 250 MPa and effective

stress at 470 MPa are shown in Figs. 41 to 43. The comparison of weak

bond analysis and experimental stress strain data at RT, 315 and 427 C is

provided in Figs. 44 to 46. The parameter R in the plots is the b to c ratio

(Fig. 36).

The prominent feature of the experimental data and weak interface
is the occurrence of knee which corresponds to the separation of fiber

matrix interface. The photograph in Fig. 47 shows the state of the

interface at 138 and 276 MPa, respectively. A separation is clearly
visible for the latter case, which is at the stress level above the knee.

(I1) Title : The ]_ffect of The Matrix Constitutive Model On Residual
Thermal Stresses in MMC.

Author : James B. Brayshaw and Marek-Jerzy Pindera

The paper presents a comparison of residual stresses using
micromechanic method of cells (Aboudi), Bodner-Partom unified theory

of viscoplasticity and finite element results of Nimmer et. al [10]. The

properties used for SiC fibers and Ti-6-4 are given in Tables 14 to 17.

Temperature dependent response of Ti-6-4 is shown in Fig. 48.

Fig. 49 shows comparison of ar, ae, anda,_i -_ from Aboudi's and finite

element models (Nimmer et. al. (10) above) using time-independent

matrix properties. The method of cells provides average stress values
over a number of finite elements between the two adjacent fibers. The
finite element results shown are for a matrix element next to the

fiber/matrix interface toward the nearest neighboring fiber. A

comparison of residual effective stress using both models is also shown

in Fig. 50, both for time dependent and time independent matrix

properties.
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In addition to finite element method, the residual stresses were

also compared using method of cells for Bodner-Partom and Power-law

creep models using the higher set of a values from Table 14. The

residual effective stresses at four cooling rates using the two models are

plotted in Fig. 51. Further, comparison of residual stress or, ao, ando,xi_

using the above two models is shown in Fig. 52. The plots indicate that

using the Power-law model, the stresses are proportional to the cooling

rate. The accumulation effect is greater above 500 C. It is suggested that

for Bodner-Partom model, the stresses are not high enough to initiate

significant time dependent behavior, therefor the stresses are same at all

cooling rates.

(12) Title : Mechanical Characterization of SCS-6/Ti-6-4 Metal Matrix

Author : C. T. Sun, J. L. Chen, G. T. Sha and W. E. Koop

This paper provides detailed results from off axis SCS-6/Ti-6-4

tensile tests conducted at RT with 40% vf. The test data are co-related

with an orthotropic plasticity model. The fiber/matrix interface damage

(weak bond) and residual stresses due to thermal coefficient mismatch

have also been investigated.

The off axis tensile test results are _hown in Table 18 and the

corresponding stress strain curves are plotted in Fig. 53. Also in Figs. 54

and 55, loading and unloading behavior of 45 and 90 deg specimens is

shown. The pseudo plasticity observed in the figures is not predicted by

continuum plasticity. The hysteresis is attributed to slippage and

damage of the fiber/matrix interface.

! Elastic Model

To calculate the off axis properties, the coordinate system is aligned

with the principle material axis, x l and x2. Then by using generalized

Hooke's Law for the orthotropic elastic model :

Eo = [ Cos40 + (_.L... 2 v__) Cos_ 0 Sin 2 0 + in_S_._]-1
E1 G12 E1 E2

= F-.x[v_-!2 (Sin' 0 + Cos 4 0) - (_--L+ J-- l-L) Sin 2 0 + Cos2 0}Vxy
E2 G12l:1 t31
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The values for G12 were found by choosing a value such that E0

agrees well with the experiment. The predicted values of Young's moduli

and Poisson's ratio are compared with the test data in Figs. 56 and 57.

Plasticity Model

To characterize the plastic

introduced a one-parameter plastic

plastic potential function as under •

behavior

model.

The model

fiber direction, i.e., d_n-0

calculated from •

of composite, authors
The model is based on a

assumes that the composite is linearly elastic in the

The other incremental plastic strains are

d_ij = d_--_--_, ij = 11,22, 12
¢)Oij

dWP = oij _ -" 2f dZ (plastic work increment)

= _ = ox h(O) ( effective stress)

d_p = _d_ = d:__(0) (effective plastic swain)
fl

h(0) = [_ (Sin 4 0 +2 a¢,6 Sin 2 0 Cos 2 0)] 1/2

and

d_ = 3/2----1-- d_ dox (proportionality constant)
h2(0) dOx Ox

The total plastic strain for off axis loading (Fig. 58) is obtained from •
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Yield Criterion

The authors also propose an off-axis yield criterion obtained from

the potential plastic flow function using equation :

where ky is the yield stress for the 90 deg specimen.
using a66 = 0.85 and a66 = 0.5 is shown in Fig. 59.

The yield plot

Failure Criterion

Two failure criteria are derived for SCS-6/Ti-6-4 (Fig. 60). The

first criterion assumes independent modes of failure for the fiber and

matrix. The equations based on the longitudinal and transverse

composite strength are :

_22 + 2b660_12 - y2 ( matrix failure)

oll = X ( fiber failure)

from test results
X = 1.793 GPa, Y = 313.8 GPa and b_ -- 0.85

The second failure criterion uses a quadratic stress function of the
form:

bll O_ll + 0"222+ 2 b12 Oll Ol2 + 2 b66 _12---- y2

!

where, from the test data bll = 0.03, b12 = -0.03 and b66 = 0.85

Residual Stresses

The authors also derive expression f_r residual stresses using a

micromechanics model based on one dimensional strength of material

approach. The fiber and matrix both are modeled as square regions as
shown in Fig. 61. The residual stress is considered only between regions

AF and AM. They also investigate the complete interface separation post

behavior for transverse loading by assuming a hole in place of the fiber.

The prediction of off-axis stress strain with the test data is compared in

Fig. 62.
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The article may be useful as it provides off axis data of SCS-6/Ti-6-4.

(13) Title-Modeling the Tran_v_r_ Creep of Titanium-Based Metal
Matrix Comvosite

Author • M. R. Eggleston and E. Krempl

The creep test data and and finite element results are compared for

SCS-6/Ti-6-4 composite. The specimen micrograph and geometry are

shown in Figs. 63 and 64, respectively. The material was fabricated at GE

using an rf-plasma spray system with 4 layers of SCS-6. The tests and

analysis were conducted for 28% nominal vf material at 480 C (900 F) in
air. The transverse creep strain and creep rate are plotted in Fig. 65 and

creep rates for the composite and matrix are compared in Fig. 66.

For the finite element analysis, matrix was modelled using unified
viscoplasticity theory based on overstress (VBO). The governing

equations of the VBO model are reproduced in Fig. 67 for the sake of

completeness. The growth laws for the state variables allow high

temperature creep modeling by interaction of hardening and static

recovery. The values for the constants are found by curve fitting the test
data and are shown in Table 19. The authors conclude that the VBO

theory is not reliable for matrix modelling at low stress levels, i.e, below

240 MPa. At higher stress levels, the results are accurate for creep

strain of up to 5%. The creep strain rate data and VBO modeling for Ti-6-

4 are compared in Figs. 68 and 69 for 340 MPa and 140 MPa,

respectively.

Finite element analyses was performed using ABAQUS. The fiber

matrix interfaces was modeled assuming a perfect bond and as a sliding
surface with no strength in the normal direction. The mesh is shown in

Fig. 70. Comparison of SCS-6/Ti-6-_ creep rate from the tests and F.E.

analysis is shown in Fig. 71. The composite creep behaviors, for perfect

and weak interfaces are compared in Figs. 72 and 73 at 170 MPa and

340 MPa, respectively. In these figures, solid lines indicate the test data.

It is observed that F.E. model results assuming weak interface and sliding

surface are in better agreement with test data.

(14) Title • t_rcep B_havior of SCS-6/Ti-6AL-4V unidirectional Composites

Author • S. W. Schwenker, I. Roman and D. Eylon
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Longitudinal Creep test data is compared with an analytical model

at elevated temperatures in which the fiber and matrix are constrained
to deform at the same rate. The deformation in the fiber is elastic

whereas the matrix undergoes elastic-secondary creep. On relaxation, the
stress in the matrix is redistributed to the fibers. The model equations

are given below where subscripts f, m and c denote fiber, matrix and

composite, respectively.

(elsticfiber deformation)

=-J- do. + ]3. (matrixdeformation)

Oc -- Of Vf +Om Vm (rule of mixtures)

_=aBm ff_ ( l'Efvf_)n (Comtmsit¢crcep rate)
a¢

where a=[E Vm + Ef vf

also

condition.

= oJ(ofVf + am Vm) was taken as the initial

The material tested was 8 ply SCS-6/Ti-6-4 composite of vf

approximately 35%. The longitudinal creep test results at 427 C and 538

C at strain rate of 10-4s-I at various stress levels are shown in Figs. 74

and 75, respectively. Tests were also caJTied out for the matrix neat
material to obtain data for the above defined analytical model. The

matrix material properties and constants obtained from the test results
are shown in Table 20. The fiber moduli was taken as 374 GPa and 354

GPa at 427 C and 538 C, respectively. The predicted creep results for the

composite and test data at 4 stress levels are compared in Figs. 76-79.

As observed, the model shows lower creep than the test data. It is also
noted that the model does not include the effect of residual stresses.

Also, the predictive accuracy further deq:reases with increasing load
levels.

(15) Title" On Time Dependent Deformation Modeling of Metal Matrix

£.mmmm 

Author • J. Ahmad, U. Santhosh and I. U. Haq
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This article presents two micromechanical models which improve

co-relation of predicted and creep test data (Schwenker et. al. -14 above).
The first model adds the effect of residual stresses in the matrix creep

and the second model considers fiber breaks as a damage mechanism at

higher loads.

Creen Model

In the subsequent equations subscripts f, m, c and T denote fiber

and matrix, composite and thermal contributions, respectively. The

model incorporating

given below :

the effect of

By integrating

composite strain is

residual stresses for uniaxial creep is

(malxix strain rate)

(composite strain rate)

where Bu- [Bm_Emvm]

Ec - Ef Vf + E m v m (l_e of mixUll_S)

1.Ervfe)+¢ (matrixstress)

matrix strain rate, the time

expressed as under :

P - y(t) ,
Q

in the above equation

P = [Bm _Emvm] 1/n (v_ + o_)

Em Vmll/n Efvfr.BrnEe vmQ

y(t) -- [(n-l) Qt +._.1._ 1-1_-1
y8 -1

and Y°=P'(Q_ )

dependence portion of
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The af and am were taken as 3.9 and 9.77 (ttm/m/C) at 538 C. The

predictions using the creep model and finite element (unit cell) analysis
are compared with the creep test data, with and without the effect of

residual stresses. The comparison is done for 538 C and constant stress
levels of 655 and 965 MPa and vf of 33%. The results from the creep

model and F.E. analysis agree well with the experiment at lower stress

levels (Figs. 80 and g 1). At higher loads, the test data show increasing

creep whereas the analysis shows creep saturation. A closer agreement

with the test data is obtained by assuming fiber damage.

Fiber Damaee Model

Consider a unidirectional laminate of length 21 and width 2W, a

symmetric half of which is schematically depicted in Fig.82. Consider

that at each edge of the panel there is a region B of width WB in which all

the fibers have fractured along the symmetry line. The remaining width

of the panel (2 WU) has no broken fibers. The panel is subjected to

uniform applied displacement dc at each end, such that the global

composite strain is dc/l.

Fig. 83 depicts the cross-section of a unit cell within the region B. It

consists of a region B l, in which the composite behaves as in the

unbroken fiber region U, and a region B2 which contains the fiber

fracture location and its associated fiber-matrix split of length 2a. Ahead

of each tip of the fiber-matrix split is a distance 2s over which some load

transfer occurs by shear. That is, 2s is a shear lag distance. The shear

stress varies from some high value at the tip of the split to zero at a

distance 2s from the tip in some fashion. Assuming this variation to be

linear, one can say that the fiber carries no normal stress over a distance

d on each side of the fiber fracture locatioa, where d is the sum of a and

s. Thus, in the region B2, the matrix material supports the entire applied

load on region B.

Denoting stress rate by _, with subscripts U, B, B I and B2 indicating the

regions shown in Fig. 82 and 83, we have
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and _=_=_

form equilibrium and compatibility considerations.

For the region U with no broken fibers, the creep model from the

previous section can be used to write.

where omu denotes matrix stressin the region U. For region B,

En

where omB_ denotes matrix stress in the region B I and

E. = lv_
dEc + (l-d_Vm

With the assumption that the fibers remain elastic, the following

expression for the composite's global strain ram (_):

where,

(1÷w_)_- w_w__

]_WBVm

OmBi-" W_Vm ((Y°" Wu Ou)" EfVf ["L")(E" 1_IB2) +(yTW V m '|-d

and Su and F-B2can be found by integrating the following expressions:

Wu
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The initial conditions to be used in evaluating Su and el_ are:

and _B2(tffi0)_ OcEB

where + EBw

The total strain in the composite panel is found by numerical

The initial elastic strain of the panel can be expressed as:

integration.

(t = O) = o_-_

.... I

I
• |

Fig. 84 shows the predicted time dependent or "creep" strain in

the composite panel for WB/W of 0.1 and various d/l ratios. The results

correspond to 538°C and applied stress of 965 MPa. It is seen that creep

strain changes by less than ten percent for four orders of magnitude

change in d/l. Thus, the solution is not ve_' sensitive to the choice of d/l.

In Fig. 85, results are presented for d/l = 0.1 percent and the width

of the region with broken fibers ranging from 0.1 to 30 percent of the

total width of the panel. Comparing with the experimental curve in Fig.
85 the theoretical curve agrees with the former for the case WB/W =

0.25, corresponding to approximately three rows of broken fibers at each

specimen edge. This is in qualitative agreement with experimental

observations reported by Schwenker et. al. for tests at 538°C.

(16) Tide" Swain-Controlled Fatigue Testin_

Author • Sami M. El-Soudani and Mary L. Cambone

Strain controlled fatigue testing of 40% vf, unidirectional SCS-6/Ti-
6-4 of was conducted at RT and 600 F. The tested material properties

are given in Table 21 at these temperatures. Both, longitudinal and

transverse fatigue tests were performed. The test was conducted at 20

cycles/min at a strain R-ratio of 0.1. The initial load-displacement trace

was given particular attention in order to study the onset of damage. A

typical initial load-displacement trace is shown in Fig. 86 for specimen
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L9, where L indicates longitudinal loading. Fig. 87 shows the trace of a

typical initial transverse load-displacement (the specimen number T9

denotes transverse loading). Also, the test data for the two orientations

are compared in Fig. 88. The test results are summarized below :

(1). The fatigue curves are well defined for longitudinal and

transverse testing at RT and 600 F.

(2). With few exceptions, the longitudinal tests exhibited only

elastic load-displacement trace over the entire specimen life.

(3). The majority of transversely loaded specimen showed
hysteresis which indicates early onset of damage.

(4) The longitudinal fatigue life is several orders of magnitude

higher than the transverse fatigue life for comparable total strain
levels.

(5) In longitudinal testing, a well defined knee occurs as the strain

amplitude attains a value nearing 85% of the monotonic fracture
strain.

The authors provide the following observations after analyzing the

tested specimens by electron microscopy (Figs. 89 and 90) :

(1) For longitudinally loaded specimens, fatigue cracks were

primarily initiated at edges and corners where the fibers were

exposed during fabrication. Cracks were also noted at the surface.

(2) In the transverse specimens, fatigue cracks initiate at
fiber/matrix interface and propagate into the matrix.

Based on test results and photographic evidence, the layout of a model

for fatigue damage accumulation is illustrated in Fig. 91. The model is

based on load displacement behavior of three components: (1) the

undamaged or virgin fiber (2) Composite with initial fiber volume

fraction vf and vie < vf and (3) virgin matrix material. The lowest curve

depicts 100% debonding, i.e., matrix with holes.

The conclusion is drawn that there are three distinct regions of

composite longitudinal fatigue life for SCS-6/Ti-6-4 described as under :
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(1) The first region is controlled by the fiber properties. In this

region, the high stresses and strain approach the fiber strength.

(2) In the second, intermediate fatigue life region, matrix

microcracking is the dominant factor. The stress and strain values
are not sufficient to cause fiber damage.

(2) In the third region, stresses and strains are below those

needed for matrix fatigue crack initiation.

Also, the damage under transverse loading was initiated during the

f'trst few cycles. The brittle nature of the fiber/matrix interface was held

mainly responsible for the low transverse strength of SCS-6/Ti-6-4

composite.

l
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Table I. umdin_onaJ fibre reinforced l_iCs a_¢zl prop_cs

Componte a,,, E

SiC_.6AL4V 0" 35 1750 30O

0.86) 90" 35 410

Table 2 - Tensile Properties of TI-6AI-4V/SCS*6 as a Function
of Thermal Treatment

O_lenta¢ !.on

Longitudinal

TransveT$_

Te=pecacure

"C ('F_

RT

316 (60OF)

427 (80OF)

KT

316 (60OF)

Thermal Treatment

As
Fabricated

NPa (ksi)

1500 (217.0)

1770 (257.0)

1120 (162.6)

1385 (199.5)

1082 (156.9)

1360 (197.3)

900C/10 hr
:NPa (ksi)

1200 (185.3)

1390 (201..4)

947 (137.3)

Thermal

Cycled

I/?a (ksi)

1675 (242.7)

1440 (208.9)

1400 (202.8)
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Table _ - Fiber Zndentatlon Results

l_terlal Condition ;_terfaclal Sheer Stren2th

lips (ksi)

As-fab=Icated (panel I)

As-fabrlcated (l_nel 2)

Aged (900¢/1650F, 10 hrs.)

2000 cycles, 21-427C (70-800F)

276 ± 10 (40.0 _ 1.5)

190:1:3 (27.6 ± 0.5)

358 _: 23 (51.9 - 3.4)

208 ._ 22 (30.2 ",2-3.2)

!

TABLE. 4

Tc.nsilc properlics of SCS-6/'T'i-6-4 compo,_itc

Condizwn Yuun_'s Ultimate S1rain-lo- Matrix tensile

mndulus strength failure strength

(GPa) (MPul (%) (MPa)

As fai)ricatcd 213 _'2I 1634 "*"117 1.1 _(1.12

SIlo "C/5(t h 207 ± 7 1724 ± 103 1 +_.I). I

_ 166. _.1 (I.79±11.11X(10 "ell00 h 222 ± 5 "_"_"_

1024

!(127

1003

lr

TABLE 5

Muhiple cracking length and strength o( inieffaciai reaction layer in SCS-6_'i alloy mamx composites

Composnc Condiuon Cracking S1rcngth

• length (_! Pa
(,uml

%%'clbull

modulus

Im}

SCS-6/'Ti-6-4 As fabricated . 8.37 ± 3.6 768 ± .326

800 "C/50 h 74 4. 30 5o6 ±'22O8

800"C/I00 h 6.94"28 3t, I .; 14.4

"t "t

2.5
2.9
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Ref. Fibre

Table 6. Measured end predicted strengths (in MPo) for CMCs end MMCs

_atrJx f Fibre strength m r r a,
(MPa) (pro) (MPa) (MPa)

_ at Lo=25.4 mm (1 in)

13 SCS-6 Ti-6-4 Variable 3650 9 70 40* 896

f

Fibre Matrix Expt Theory ROM BROM

SCS-6 T_6-4
f= 0.27 1556 1566 1654 1368
f= 0.34 1670 1726 1832 1480
f= 0.34 1490 1726 1832 1480
f= 0.43 1900 1944 2080 1633

TABLE 7
ELcvncMoouu oF A TtMNSVnS_YlSOT=O_CF,0tous Couposrct

E -. C,', 2C_= K=. - §(C==+ C==)
Cza + C==

G - G,= - G, - C,., G. - _(C==- C=:)

. I (C,, - E'_'" K,,- qV3,,

4G:3 K=3 4K,3":

E:'E='E::+6r:3 d_'l + E

Smss-Smtin Relationships

c,, - (l/E,){a,, - ,_q==+ =r:.)]

•/.. ,/,] ,,=(I/G)G:=

==:-- ¢=:- (l_=Xe=, -- .o:,) -- (_'_)_,,

2(I + .=:)
713 an _ 01,

E:
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TABLE 8

ELAST1C CONSTANTS OF A TItANSVEItSE_¥ |S011tOPIC

COMPOSITE fN "rEaMS OF COMPONEf¢1 CONSTANTS

(M_.TltlX ISOTROflC, FIsEIt ANIS'rlOPIC)

Lonlg:mdinal modulus E,_ - F_V_ -t- F...V.

"rransvcrsc modulus E== - E_ -
I - (V,)':(I - F.,,/F_:)

G.
Skau modulus G,_ - G_ -

I -- (%'r)tlSil -- G./G.z)

G.
Shear modulus Gzs -

I - (VrP'=(I -- Gm/Gf2_)

PoiMon ratio v:,. v:_ - htlV_ + v.V.

Ea_
POI_I,IOB t'&tiO vl) m _ -- 1

2G=)

TABLE 9

VALLW.SOr _ FOa SoM_ UNJ,LX_AL
CoMposrrts

.i . i

Modtdus

E,, _t/d)

E:= 0.5

Gtz 1.0

Gz_ 0S

K 0

Source: Adapted with pennmion from SImnlrer-

Veriqg. New York, K. K. Cha,aia, "Compos_e

Matenal_" In?.

!
System

TABLE10
COMIqD$1TIF.TFNSILE ROOM "rEMPEIATUIE PItOPEITIES t

i i •

Uh,mate ten:._l¢ strength

Modulus b

Lontmudinal Tnmsw,_ ioqgitudmal
MPa MPa GPI

SiC/T,-_AI-_V b 820 3110 225

$CS-6/'Ti-6AI-.J V b 1.455 340 240

• Four-ply, und)rm)ohully reinforced. 35 ;o 40 vo)-%.

• Abet {abrgauon and low temperature. ,',96"C for $12 hours exposure.
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mndinem debondsm:_ _deboad fri_xudsm_ TeszMethod
0_lPa) _ (MPa) Oa_)

_.f_._t_l 138.3 155.9 _.5 indcnta_
,,_-f_n'i_eed -- 180.0 -- fragmen,,don [12]
800 "C/50 h 151.I 164.5 90.2 indcn_don
8C0 "C/100 h 153.5 167.1 90.2 inflentanon

! TABLE 12 Thennophysical data

Property Fibre {SiC) Composite Mamx
(Ti-35%SiC) (Ti-6AI-4V)

AxialE (OPa) 450 232 115
Trans.E (GPa) 450 155 115
Axialv 0.2 0.3 0.35

Trans. v 0.2 0.25 0.35
Axiala {I0-"K -l) 4.0 5.0 8.0
Trans.a (I0-*K "j) 4.0 7.0 8.0

TABLE 13-. Ti.6 A I.4 V propf nies.

Ymmg's Yield Flow

Temperature, Modulus, Slre_. Modulus,
"C GPa t, MPa GPa

a (Re[. = 900"C)
(10") ('C)"

21 !13.7 0.3 900
149 107.5 0.3 730

315 97.9 0.3 517
482 81.3 0.3

649 49,6 0.3 303
9O0 2O.7 0.3 35

4.6
4.7

5.4

4.8
1.7

!.2

9.44
9.62

9.78
9.83
9.72
9.Bl

-[.,]
Creep law: e, ,, _(o't)(r':)e r - ZT, .

a, = 3.6 x 10' (MPa) "j_ (h) ".m',
a, ,- 3.403.

m_ ,- 0.9251, and

*, " 3.6 x I0'(*C).
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Temberature E v _ o_,,gh oy E_:,.

(°C) (GPa) (10-6/eC) (104/'C) (MPa) (GPa)

21 113.7 0.3 9.44 11.0 900 4.6
149 107.5 0.3 9.62 11.3 730 4.7
315 97.9 0.3 9.78 11.7 517 5.4
482 81.3 0.3 9.83 12.0 482 4.8
649 49.6 0.3 9.72 12.2 303 1.7
900 20.7 0.3 9.81 12.4 35 1.2

Table 14 Material constants of the titanium alloy Ti.6AI-4V

.Z;

Fiber EA VA ET _r GA a

(GPa) (GPa) (GPa) (10"s/°C)

SiC 414 0.3 414 0.3 159.2 4.86

Table15 Material properties of the SiC; fibers

a_ a 2 a 3

(104) {°C)
ao

0 g) (MPa)-_ =oa (hr.)-o _zsl

3.6 3.403 0.92.=,1 3.6

Tabie16 Power-law creep coefficients of the titanium alloy Ti-6AI-4V

!

Temperature D_' 7-o Z_ rn n

(°C) (s) (MPa) (MPa)

21 10"a 1060 1500 "2.7 10.0
149 10"a 890 1500 11.68 8.42
315 10"a 800 1500 19.2 3.6
482 104 1140 1500 |21 1.71
649 10 "4 1160 1500 85.6 1.038
900 10"4 580 1500 340 0.396

Table 17 BoOner-Partom parameters of the titanium alloy Ti-6AI-4V
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Tabhs 18 Off,axis tenskm test results.

Th x Wd E, e, o,,

e Specimen (ram x ram) (GPa) (MP41) (MPII)

1 2.49 x 18.9 231 I 1963

0 e 2 2.49 x 18.9 230 I 1618

3 2.46 x 19.2 229 / 1812

Average 230 - ! 1798

I 2.44 x 18.7 235 I 1832

5 ° 2 2.44 x 18.7 235 I 1464

3 2.44 x 16.7 231 I I

Average 234 / 1648

1 2,44 x 18.7 230 I 1511

10; 2 2.44 x 18.7 228 I 1539

Average 229 I 152,5

1 2.49 x 18.9 205 834 1026

2 2.49 x 18.7 205 876 1006

15 ° 3 2.39 x 19.1 208 828 978

4 2.49 x 18.5 217 862 952

5 2.49 x 18.8 221 I 931

Average 211 0,50 979

1 2.49 x 18,6 162 425 544

2 2.49 x 19,6 161 399 566

3 2.39 x 19.1 172 341 524

30 e 4 2.39 x 19.1 168 423 535

,5 2.49 x 18.4 181 455 517

6 2.49 x 18.8 188 448 544

Average 172 415

1 2.49 x 18.8 135 290 381

2 2.49 x 19.2 141 255 387

45 e 3 2.39 x 19.1 155 _ 270 405

4 2.49 x 19.5 162 290 386

5 2.49 x 18.9 167 283 390

Average 152 278 390

1 2.49 x 18.1 159 241 369
60"

2 2.49 x 18.9 162 164 303

Average 161 213 336

1 2.49 x 18.9 146 177 301

2 2.49 x 18.6 130 169 319

3 2.39 x 19.1 143 192 310

90 ° 4 2.39 x 19.1 155 200 341

5 2.49 x 18.8 160 172 300

6 2.49 x 18.8 167 184 270

Average 150 182 307
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Variable

KI

K:

K_

K,

Ks

Cl

C:.

C)

C,

Value

2.5

8270.

2.0

0.0

0.0160

26200.

79200.

0.0508

4.79

Units

Hours

MPI

o..

MPa

1IMPa

MPa

MPa

IIMPa

llMPa

R,j 0.0 I/Hours

R,, 0.0 --

P_ o.oooo2 -

R_ 1.0 I/Hours

h 1.0 ---

G) 200. MPa

A, 169. MPa

B 162. MPa

91600.

2070.

0._

E

L

V

MPa

MPa

Table 19 VBO Material Coefficients forTi-6AI-4V at 4_'_

.!
TABLE20Tension and Creep Properlies of Ti-SAI-4V Neat Panels

Tmrv Em a_s Outs n Bm

("C') (GPa) (MPa) (MPa) (MPa"ns"1)

427 85 502 618 _ 2.58 X 10" 29

538 69 443 478 7 2.12X10 "23

"reported values represent the average o! tr_h,;ate tests
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Figure 1. E_ecl of AI matrix alloy on ,st,ress-
strsin behavior of composites with 20 ,oI

SiC, rein/'oreanent
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Figure 2. Stress-strain curves of SIC/6061 AI

composites Cl'6-temper, tested in lon_itucSnal

direction) [4].
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b) 16$0"7/10 hours

10p.m

¢

c) Thermal cycled 2000 times from _T ¢o 800"F

F£gure 3 - Znterface N1crostructure as Znfluenced by Theraal

Treatmencs
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(e) (I))
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graphs of SCS6f]rt.-6Al-_V NleC I - 0 del;.
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Loading at 600"F.

is) (D)
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Figure63 Micto_aph of SCS-6/Ti-6AI-4V

ConsolidatedComposite
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VISCOSITY FUNCTION

RECOVERY FUNCTION

where

a_ ;_"h9-'h

u,.-3._[R_-R,,J [R-j_,]

,_- 1_-,1-R_{n].P " e,,e,,.

where

and

• is the stress,

s is the deviatonc stress,

is the strain,
¢ is the deviatoric strain,

g is the equilibrium (back) stress (deviatoric),

]" is 1he kinematic hardening variable {d_.viatoric),
A is the isotropic hardening variable,

_!, is the shape function, which controls the quasi-elastic to inelastic region transition,

k is the viscosity function, which controls the model's rate dependence.

Figu_ 67 VBO Model
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ABSTRACT

The investigation is aimed at assessing the effect of biaxial loading on monotonic su'ess-swain
response of metal matrix composites for high temperature applications. A mioromechanics approach
is used. The approach is implemented by a nonlinear finite element analysis method, and validated
by comparing predicted behavior against available dam under unlaxial loading. Predicted behavior
under biaxial loading shows smaller strain values at apparent yield of the composite in both the
longitudinal and wansverse directions compared to unlaxial loading. Also, longitudinal stress at
apparent yield is lower under biaxial loading than in uniaxial loading. The results suggest the need
for experimental investigations of biaxial loading effects.

I. INTRODUCTION

Continuous fiber metal matrix composites (MMCs) are being considered by the aerospace
industry for use in certain engine and airframe components of supersonic and hypersonic vehicles
[ 1]. For example, an important application in engines is the use of MMC ring inserts in rotating
components made of titanium CI'i) alloys or intermetaUic compounds. Typicaily, the inserts have a
Ti-based matrix with continuous circmnferentially oriented silicon carbide fibers. The purpose of the
inserts is to alleviate the relatively high hoop stress close to the bore of the component (caused by
centrifugal forces) without increasing the weight of the component. In airframe applications MMC
cross-ply laminates are being considered for the skin.

Significant amount of research is being done aimed at characterizing and understanding the
behavior of MMCs under a variety mechanical, thermal and thermomechanical load conditions [1].
A review of open literature on the subject reveals that the focus of this research is almost exclusively
on MMC behavior under unidirectional loading. The study of MMC response under biaxial and

mulfiaxial loading has remained largely unexplored. This is despite the fact that in many
applications, including the ones cited in the previous paragraph, MMC components are subjected to
mulfiaxial loading.

Common methods of biaxial testing, such as udmg cruciform specimens [2], require specimen
sizes much larger than used in uniaxial testing. The current lack of ready availability and high cost
of most MMCs precludes a study which would involve many tests. However, mathematical
modelling techniques can be used to explore the effect of biaxial loading. This is the rationale for the
work reportedinthe presentpaper..'Fue ap_... is to (a) select a modeling technique which allows
the consideration of muldaxlal loading, (b) validate the technique using available data on MMC.s
under unlaxial loading, and (c) predict sucss-strain _nse of MMCs under biaxial loading.

A nonfinear finite element based micromechamcs model is used. The reason is that only at the
micmmechanics_level reasonable assumptions regarding material behavior of the constituents (the

C.l
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matrix and fiber materials) under multiazial loading can be m_:le. The model includes cons'ideration
of MMC consolidation process induced residual stresses a_d damage in the form of fiber-mau'ix
debonding. A description of the model is given in the next so=-tion. Following that, micromeehanics
model predictions are compared with experimental data on some titanium (Ti) alloy matrix
composites with silicon carbide fibers under uniaxial loading. Finally, predictions under biaxiad
loading conditions are presented and discussed.

2. MODEL DESCRIPTION

Prediction of suess-stnin response of composites is made using a variety of models. Broadly,
these models can be categorized as (a) laminate level models, Co) lamina/ply level models, and (c)
rnicromechanics models. These three categories respectively require laminate, lamina/ply and
constituent stress-strain data as pan of the input under thermal, environmental and mechanical
conditions of interest. Under biaxial loading, none of these data are readily available for Ti alloy
matrix composites. However, it seems reasonable to assume that the matrix material stress-strain
response under biaxial loading can be adequately well predicted by using well established methods
of plasticity theory.

We assume that the fiber behaves linear-elastically and is isotropic. While the linear elastic
response assumption may be reasonable for most fibers in use with Ti alloy matrices, the isotr_icity
assumption may not. For example, see a schematic drawing of the Textron Specialty Materials'
(TSM's) SCS-6 fiber cross-section in Figme I from reference [3]. While no data can be found on
radially loaded fibers, composition of the fiber suggests that it is unlikely to be the same as under
axial loading. Nevertheless, due to lack of data, we assume the fiber to be isotropic. The error
introduced by this assumption will contribute to any difference between predicted and measured
stress-swain response of unidirectional composites loaded transverse (90 degrees) to the fiber
direction. This is discussed in the next section.

We also assume that if there is a "reaction zone" between the fiber and the matrix, its
dimensions and properties are such that one can assume a step change in material properties from
fiber to mat2"ix. This amounts to assuming the reaction zone width being much smaller compared to
the characteristic length and/or reaction zone propaxies being approximately the same as the matrix.
The characteristic length in this context is smaller of the fiber radius and half the fiber spacing.

Based on data and analyses on some Ti-alloy/SCS-6 composites (for example, see references
[4] and [5]) it also seems reasonable to assume that there is either no chemical or diffusion bond or a
very weak bond between the fiber and the mar'ix. Then, the fibers and the matrix are held together
only by the consolidation process induced residual stresses. Relative sliding and opening between a
fiber and matrix become possible when the interface shear and radial stresses caused by applied
mechanical or thermal staxss loading nullify the residual shear and radial stresses, respectively. The
assumptions of small or no reaction zone and small or no bond strength also avoid the need for
experimentally measured traction zone properties and bond strength which are generally unavailable
anyway.

With the above main assumptions, we consider a unid_onal composite to be made up of a
large number of identical unit cells of the configuration shown in Figure 2, repeated in directions
marked Xt, X2 and X3. L2 and L3 represent fiber spacing in the two directions such that the fiber

volume fraction(Vf)isequaltonrr2/4LaL3.Reflectivesymm.e.tryabouttheX2 and X_ axesallows
considerationof onlyone quarterofthecellwiththepre.,cnpuonofboundary displacements(ul)

such thatu2=0 on 0_3<I 3and u3--Oon 0<2X#_la.

We allow the composite to be subjectedto su-diningin the threedirectionsby uniform

displacements St, 82 and S3 applied to the three planes. Thus the model allows for sll stress

components {Oij) tO be non-zero except or2 and otj shear components which are assumed to be

zero. Also the strain component t_tt is assumed to be a constant. Thus, the problem is one of

generalized plane swain. Note that even when S2 and/or B3 are zero, the corresponding plane is
constn/ned such thatitdisplacesparalleltoitself._ U 1 _ ' theu_t _ _ ismeant torepresentthe
behaviorintheinteriorof thecompositeata distance(away from allfr_csurfaces)which islarge

compared to the largest cell dimension.
To model possible fiber-matrix debonding, we also i_apose the constraint that at r=rt, the radial

displacement component (Ur) in the matrix and the fiber _ such that (ur)m" (ur)t _0. The subscripts
m and f denote matrix and fiber, respectively. The condition is implemented in a nonlinear contact
algorithm which allows for open_g between the fiber and the matrix and restricts interpenetration of
one material re#on into another.

The above boundary conditions, together with the eq_:ilibrium and compatibility equations and
stress-strain relations for the fiber and the matrix materials constitute a nonlinear boundary value

C-2
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.problem which wc solve numerically by the finite clcmcnt method. The fibc_ stress-swain behavior
ss rcpresemed by the Hooke's law for isolropic materials with appropriate adjusunem for free
thermal expansion. The mau-ix material is modeled as elastic-plastic using yon Mises yield
condition, associated flow rule. and isocropic hardening. Sacss-sn-ain relations as well as the
coefficients of thermal expansion for both the fiber and matrix materials arc considered to be
tCml_rature dependenc

The finite element discretization is done using the isoparamcnic formulation with biquadratic
basis functions for displaccn_nts. The eight node gencnl quadrilateral elements have 17 degrees of
freedom: u2 and u3 at each node, plus a u 1 degree of freedom common to all nodes for enforcing the
generalizedplanestraincondition.The problemissolvedincrementallyusingtheModifiedNewton
Raphson teelmique within each increment.

3. MODEL VERIFICATION

The micromcchanics model described in the previous section involves several assumptions
regarding behavior of the constituent materials, topographical structure of the composite, interface
strength etc. Also, the boundary value problem is solved using a numerical technique which also
involvesseveralassumptions.Itisinfeasibletoevaluatetheeffectofeachindividualassumptionon
theaccuracyof model predictions.However, theirsynergisticeffecton solutionaccuracycan bc
assessed by comparing model predictions with measured stress-strain data. For this purpose, we
consider the following thn_ MMC.s:

(A) "ri-24Al-11Nb matrix with 35 percent volume fraction of SC$-6 fiber,
(]3) Ti- 15-3 matrix with 34 percent volume fraction of SCS-6 fiber,

and (C) another 13phase "ri alloy with 33 percent volume fraction of SCS-6 fiber.
Figures 3 (a, b and c) show the uniaxial stress-strain test data on matrix materials for the three

MMCs. The temperature dependent Young's modulus (E), Poisson's ratio (v) and coefficients of

thermal expansion (a) for the three matrix materials are given in Table 1. The SCS-6 fiber
properties arc given in Table 2. The matrix material data were obtained from references [6-10]. Not
atl data on each material could be found from a single source. For example, 13-15-3 stress-strain
curves at various temperatures (Figure 3b) were obtained f_m references [7], [8] and [9] because no
singlereferencecontainedallthedatawithinthetemperaturerangeof interest. Consequently,as
discussedinreference[9],thedatawere obtainednotonlyusingdifferentlotsofmaterialbutalso
usingmaterialssubjectedtosomewhat differentheatIn-.amacntspriortotesting.

Figures4 and 5 show thepredictedand experimentallyobtainedstress-straincurvesunder 0
degreeloadingforthethee MMCs atroom temperatureand atelevatedtemperature,respectively.
No fiber-matrixdebonding was predictedin any of the composites. All predictedas well as
mcasu_ sm:ss-su'aincurvesshow deviationfrom linearelasticresponseatstrainlevelslowerthan
thecorrespondingmatrixmaterialstrainatyield.Thisistheconsequenceofconsolidationprocess
inducedresidualstresseswhich producea tensileinitialswaininpartsofthematrixmaterial.H there
were no residualstressesand the fiberand matrixwere held togetherpurelyby a chemical or
physicalbond,thedeviationfrom lineasitywould occuratexactlythematrixmag'rialstrainatyield.
Figure6 forthematerialsystem (C)shows thatthisisthecasewhen themodel isusedwithoutthe
considerationofresidualstresses.The postyieldst_ss-strainbehaviorunder0 degreeloadingcan
be expressedas:

(dol&)oc_g,_=_-[ '/m (l-v0+ yfvt] (1)

where Ec - Ef vt + F..m(l-vf), (2)

" mj= .rXm.f . (3)
I+Em.f

and d_f -- _f dom.f • (4)

In the above,dEiand do-_present inelasticstrainand stressincrements,respectively.The

subscriptsf,m and c indicatethefiber,matrixand compositerespectively.Assuming thefibertobe

elastic,Xf---0and assuming matrixtohaveconstantstrainhardeningwith"tangentmodulus I_m,one

getsfor the0 degreecomposite:

(dolds)0_z3_.c= vt Ef + (I-vf) E_ (5)
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The result shown in Figu_ 6 compa_ weU with Equation C;). Equations (1) to (4) can be used m
pr_llct 0 degn_ response of composites forother mauix mamdal constitutive nxxtels.

In the Fr_ence of residual stresses, an estimate of the 0 degr_ composite yield s_..ss (oy) is as
follows:

--(Oy)0 ,b_ -- + Ef vf (o.m- of) (Tt -T<:), (6)

where Oym is the rna_ix yield su'ess, Tt is the test temperature and Tc is the (sucss free) composite

consolidation temlx:ramre. The coefficients of _ expansion c_ and at for the matrix and the
fiber materials represent average values over the temperature range T,<T< To. The result shown in
Figure 6 compares well with the estimate given by Equauon (6). This estimate is not expected to be
very accurate if the residual sn'csses in significantly large por'nons of the matrix exceed man-ix yield
S13"_,SS.

Under 90 degree loading, the predicted and experimentally obtained su_ss-su'ain curves for
MMCs (A), (B) and (C) are shown in Figure 7 for room temperature and in Figure 8 for elevated
temperature. In conwast to the 0 degr_ loading, wansverse loading was found to cause large enough
tensile radial stress at a portion of the fiber-malrix boundary to nuUffy the compressive interracial
residualstressespriortomatrixyielding.Thus, the model predictedfiber-man_xseparationinall
cases.

In Figure 7, the first inflec6on in the predicted suress-su-aJnbehavior is a manifestation of fiber-
man-ix separation. For MMC (B), Figure 9(a) shows the progression of fiber-mau'ix separation as
predicted by the model. It shows that the first inflection in the predictcd Figure 7 curve for (b)
occurs at an applied swain level which corresponds to the eraser of separation.

Figures 9 (a and b) also show the extent of man-i_ yielding with incr_sing applied s_Jn for
Iv[MC (B) at room tcmperatmc and at 538°C. The extent of man-ix yielding is presented as percent of
yielded man-ix volume. Comparing Figures 9 (a and b) with Figures 7 and 8, it is seen that the
second inflectious in the predicted su'essswain curves approximately correspond to the onset of
man-ix yielding.

Comparing the predicted and measured suess-su-ain responses shown in Figures 7 and 8, it is
seen that while the model is able to capture the character of the curves, there are differences. The
tendency of the model is typically to overestimate the suess at a given su'ain.

In the elastic range prior to separation, the measured r-.sponse is typically more compliantthan

predicted by both the present finite element model and by the rule of mixrm'es applied m constituent
compliancevalues(somc6mes referredtoas"inverse"ruleofmixtures).The discrepancybetween
predicted and measured initial elastic response may be at least partly am-ibutable to the way
wansverse su-ain of the composite is defined. In the model, the strain is simply the applied (uniform)
displacement at x2 = L2 (see Figure 2) divided by L2. This implies that the displacement u2 varies
linearly with x2. This of course is not the case. An alternative definition of swain may indeed bring
the predicted initial elastic response closerto that found e_nud]y.

Su-essat which fiber-matrix separation is pre_ficted is typically lower than at the first inflection
in the measured slress-su-ain response. This may be dae to an underestimate of consolidation
process induced residual suesses by the model or (for some composites) due to possibly erroneous
assumption in the model that there is no chemical or phys_.,cal bond between the roan'ix and the fiber
materials. Additionally, possible inaccuracies in the matrtx and fiber propez'des used as input to the
model may have con_buu'._:l to the discrepancy between predicted and experimentally obtained sucss
s_ curves.

Notwithstandingsome cfiscrepancies between the predictedand measured 0 degree and 90
degreecompositesn'ess-swainbehavior,we considez'edzz_odelpredictionsaccurateenough toallow
atleasta preliminaryinvestigationwhichinvolvessimultaneous0 and 90 degreeloadingof the unit
cell. This investigation is discussed in the next selection.

4. BIAXIAL LOADING EFFECTS

Employing the same unit cell model as described ks the previous section, computations were

performedon composites(A),(B),and (C)withsimultaneousapplicationofuniformsu'a.ins_ and

ZTindirectionsXz and X2, respenfively.Solutionswere.obtainedforeachcompositeunderseven

differentapplied _T/E L ratiosrangingfrom purelylongitudinal(_T/EL--0) £O purely transverse

(_'r/Zc--'_)strains.The resultsarcshown inFiguresI0,11 and 12.
Figures 10a, 11a, and 12a show the predictedfiberdirectionsn'ess-stralnresponse for

compositesA, B, and C, respectively.In each case,computationwas terminatedifcomplete
debondingbetweenthefiberand thematrixwas predicted.As expected,thepredictedinitialelastic
responseisstifferunder biaxialloadingthanthatunderpurelylongitudinalloading.This trend

!
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would be expected to continue in the inelastic region if there was no damage. To study the effect of
biaxiality in the presence of damage on the longitudinal and transverse slrcss-scrain responses,

consider the curves for composite A corresponding to two biaxiality ratios (_T/_L): 0.2 and 5.0
respectively.As discussedintheprevioussection,thef_t inflection(knee)inthewansversestress-
swam curveisa manifestationof damage occuringatthefiber-roan'ixinterface.This inflexionis

apparentinthetransversesness-stralncurvesunder biaxialloadingshown inFigures10b,lib,and
12b. Figure10 shows thatthe f'trstinflectionin thetransversestressstraincurvesattheabove

mentioned two biaxialityratiosoccursat sT valuesof approximately0.09 and 0.15 percent,

respectively.At theseET values,thecorrespondinglongitudinalswains(EL)are 0.45percentand

0.03percent.Figure10a (andmore clearlyFigure13,which presentsa magnifiedview ofthetwo
specificcurvesbeing considered)shows thatthe longitudinalstress-straincurves deviatefrom
linearityattheseapFroxirnateswainvaluesof0.45and 0.03percent.But thereisno "knee"inthe
longitudinalcurve.

The absenceof a sharpknee in thelongitudinalstressstraincurvesisa consequenceof the

uniform displacement(81)boundary conditionimposed at allnode pointsof the unitcell,and

maintainedeven afterfiber-matrixdebond occurs.Inessence,thisboundary conditionprecludes

any possiblechange inlongitudinalelasucmodulus (EL)of thecompositedue todebonding.Thus,
the knee isabsentfrom longitudinalstress-straincurves.Debonding does however causestress
redistributionand localizedmatrixyieldingatdebond terminiasshown schematicallyinFigure14.

This localizedyieldingcausestheprematuredeviationfrom linearity,apparentin Figure13,at
longitudinalswainssmallerthantheswainatapparentyieldinthepurelylongitudinalloading

Overall,thecomputationalresultssuggestthattheeffectsof biaxialloadingon longitudinal(0
degree)stress-strainof thecompositesa:e intheform of increasedapparentstiffness(EL)inthe

linearrangeand reducedswainatapparentyield(ELy)ofthecomposite.The apparentyieldstress,

cYLy(= ELZLy)islessunder biaxialloadingthanunder uniaxialloading.The postyieldbehavior

depends on thehardeningcharacteristicsof thernau'ixaswell ason thegrowth behaviorof the

debond length.While the extentof theseeffectsare of coursematerialdependent,asseen by
comparing Figures10_,lla,and 12a,thequalitativefeaturesarethesame.

The effectsof biaxialloadingon u'ansversestress-swainbehavioraresimilartothoseforthe

longitudinalcasebutsomewhat more pronounced.BiaxiaIloadingcausesan incn:aseintheapparent

elastics6ffness(ET)and dec:r.a_inthestrain(ery)atwhich deviationfrom elasticbehavio_occurs
(seeFigures10b,IIb,and 12b).As discussedearlier,fiber-man-ixdebond damage causesa kneein

thesu'essstraincurveswhich ismost pronouncedinthepurelytransverseloadingcase (_/¢L=_).

The curvesbecdme more plasticitydominatedthandamage dominatedwithdecreasing_T/¢I.ratio.'

In contrasttothelongitudinalbehavior,theapparentu'ansverseyieldstress(CYTy)islargerunder
biaxialloadingthan under purelytransverseloading. However, in the largestrainregimethe
apparentu-ansversehardeningmoduliiforthebiaxialcasesarelessthanforthepurelywansverse
loadingcase.

$. CONCLUSION

The objectiveofthepresentwork was toassesstheeffectofbiaxialloadingon thesuess-swain
response of Ti-based manix composites with continuous silicon carbide (SCS-6) fibers. Three
differentmatrixmaterialpropertieswere used. For allthreecomposites,existingexperimental
evidenceindicatedweak fiber-man-ixinu_'faces.

A micromecha.r6csapproachwas adoptedtopredictMMC responseunderbiaxialloading.The
approach was implemented using a genera.fizedplane strainnonlinearfiniteelement analysis
procedurewhich includedan algorithmformodeling fiberman-ixdebonding. Itwas demonstrated
thatthe approach provided a reasonablygood predictionof (atleast)the key featuresof the
compositestress-strainbehaviorunder uniamalloading.The predictedstress-su'alncurvesunder
biaxialloading(forwhich no experimentaldatacouldbe found)shouldbe viewed inthesame vein,
thatis,while thepredictedurendsand fcatm'esare believedto be representativeof what would
happenina test,specificvaluesofkey parameters(suchasappaxentyieldstressesand strains)may
not beprecise.

For theMMCs considered,theexpectedincreaseinboth longitudinaland transverseapparent

modulii(El.and ET) was observedunderbiaxialloading.Itwas found thatthefiber-matrixdebond

causedby wansverseloadshas theeffectofloweringtheapparentlongitudinalstress(andstrain)at
yield. Depending upon the biaxialityratio,thisdecreasein yieldstreng'thand strainmay be
significantenoughtodeserveconsiderationasadesignparameter.
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R The effect of biaxial loading on transverse str_ss-sn-ain behavior Was also found to be

significant, especially for applied £TIEL < 1.0. All intere_';ting feature (in the range of practical
intercsO is the cross over of n-ansvene sr_rcss-slza_ curves (see Figures'lOb, l lb, and 12b).

Depending upon the n-ansvcrsc sm=ss(or) level, the mmsvcrsc sn-a3n(el-) under biaxiaJ loading cam
bc less or more than under purely Iransvcrsc loading.

I
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Table-I: Mechanical Properties of MMC Matrix

Temperature
(°C)

Tensile Poisson's Yield

Modulus Ratio Strength
(GPa) (MPa)

Tangent
Modulus

(GPa)
Ti-2'- 1!

21 84.1 0.30 1140 0.9
168 86.3 0.30 680 2.1

315 88.4 0.30 410 3.3
649 48. l 0.30 257 4.1
760 36.1 0.30 172 3.7
I010 11.3 0.30 54 4.2

Ti-15-3

25

482

538

566

650

86.3 0.36 763 3.2
72.2 0.36 577 3.5
77.8 0.36 447 2.6
64.4 0.36 287 2.3

53.0 0.36 8.,!Oy.,198 I.I

117.0 0.34 1050 3.8

I01.0 0.34 775 5.4

95.4 0.34 690 6.4

78.1 0.34 470 17.0

73.2 0.34 289 14.7

21
316
482
566
621

CTE

(gm/m/°C)

9.27

9.86
10.45
11.79

i

12.24
13.25

8.48
9.71
9.87
9.98

10.26

8.34

9.35

9.97

10.30

10.53

Table-2: Mechanical Properties of SCS-6 Fiber

Temperature
(*C)

25
482
538
566
650

Tensile
Modulus

(GPa)
393
376
374
373
370

Poisson's
Ratio

0.25

0.25

0.25

•0.25

0.25

CTE

(pm/m/*C)

3.56
3.99
4.07
4.12
4.27

Carbon Core
Graphite Coating
Fine Grained SiC
Mid-radius Boundary
Large Grained SiC
Outer Coating

Figure 1: A schematic diagram of a cross-section of an SCS-6 fiber.
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